既約元
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/01/18 15:44 UTC 版)
抽象代数学において、整域の 0 でも単元でもない元は、それが2つの非単元の積でないときに、既約(英: irreducible)であると言う。すなわち、整域
この項目は、抽象代数学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています(プロジェクト:数学/Portal:数学)。
- 既約元のページへのリンク
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/01/18 15:44 UTC 版)
抽象代数学において、整域の 0 でも単元でもない元は、それが2つの非単元の積でないときに、既約(英: irreducible)であると言う。すなわち、整域
この項目は、抽象代数学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています(プロジェクト:数学/Portal:数学)。
既約元のお隣キーワード |
既約元のページの著作権
Weblio 辞書
情報提供元は
参加元一覧
にて確認できます。
All text is available under the terms of the GNU Free Documentation License. この記事は、ウィキペディアの既約元 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。 |
ビジネス|業界用語|コンピュータ|電車|自動車・バイク|船|工学|建築・不動産|学問
文化|生活|ヘルスケア|趣味|スポーツ|生物|食品|人名|方言|辞書・百科事典
ご利用にあたって
|
便利な機能
|
お問合せ・ご要望
|
会社概要
|
ウェブリオのサービス
|
©2025 GRAS Group, Inc.RSS