数え上げの積の法則とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 数え上げの積の法則の意味・解説 

数え上げの積の法則

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/01/21 18:16 UTC 版)

ナビゲーションに移動 検索に移動
The elements of the set {A, B} can combine with the elements of the set {1, 2, 3} in six different ways.

初等組合せ論における積の法則(せきのほうそく、: rule of product)あるいは乗法原理 (multiplication principle) は基本的な組合せ原理英語版(数え上げの基本原理)の一つである。それは、簡単に言えば「ある場合が a 通り、別のある場合が b 通りあるとき、それらを同時に行う場合は a⋅b 通りある」ことを述べるものである[1][2]

{A, B, C} から一つと {X, Y} から一つを選ぶことは、{AX, AY, BX, BY, CX, CY} を一つ選ぶことである。

この例では、積の法則は 3 × 2 = 6 と表すことができる。

この例における集合 {A, B, C} および {X, Y}互いに交わらないが、それは必要なことではない。

例えば、{A, B, C} から一つ選び、再度同じ集合から一つ選ぶとすれば、それは {A, B, C} の要素からなる順序対を選ぶことと理解されるから、3 × 3 = 9 通りになる。

別な例として、ピザの注文で生地の種類を薄いか厚いかの 2 種類と、トッピングをチーズ・ペペロニ・ソーセージの 3 種類から選べるとすると、積の法則を用いれば、ピザの注文方法が 2 × 3 = 6 通り可能であるとわかる。

応用

集合論において、乗法原理は基数の積の定義に用いられる[1]。集合の濃度に関して

が成り立つ(右辺の ×デカルト積演算である)。これらの各集合は有限集合である必要はなく、またこれら因子の数が有限個である必要もない。

関連概念

数え上げの和の法則はもう一つの数え上げの基本原理である。簡単に言えば「ある場合が a 通り、別のある場合が b 通りで、それらを同時に行うことがないならば、それらの場合は a + b 通りある」ことを述べるものである[3]

関連項目

参考文献

  1. ^ a b Johnston, William, and Alex McAllister. A transition to advanced mathematics. Oxford Univ. Press, 2009. Section 5.1
  2. ^ “[http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/col_alg_tut55_count.htm College Algebra Tutorial 55: Fundamental Counting Principle]”. 2014年12月20日閲覧。
  3. ^ Rosen, Kenneth H., ed. Handbook of discrete and combinatorial mathematics. CRC press, 1999.

外部リンク




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「数え上げの積の法則」の関連用語

数え上げの積の法則のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



数え上げの積の法則のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの数え上げの積の法則 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS