基本的な積
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2016/09/08 16:41 UTC 版)
ネイピアの骨で基本となるのが、複数桁の整数と1桁の整数の積を求めることである。ここでは、ネイピアの骨を用いて 46785399 × 7 を求める。基盤に左から 4,6,7,8,5,3,9,9 の棒を順に並べる。もし0を含む桁がある場合、0の棒が無ければネイピアの棒を置かずに空白にすればよい。右端から順に、斜めに区切られた部分の数字を順に足していく。足した結果が2桁になる場合は、繰り上がりをし、左側の列にその数を足す。 上図で色の変えてある 7 行目を拡大し右側に抜き出してある。この 7 行目の一番右の正方形の右下は3なので、求めるべき積の1の位は3となる。次に、一番右の正方形の左上は6、その左隣の正方形の右下は3なので、求めるべき積の10の位は6+3=9となる。同様に、100の位は6+1=7となる。10万の位は5+9=14となるので、1を繰り上げて100万の位を4+2+1=7とし、10万の位を4とする。従って、求めるべき積は327497793となる。 このような足し算を見やすくするために、棒を傾けて、足す数を縦に並べられるようにした形のネイピアの骨の改良版も作られている。
※この「基本的な積」の解説は、「ネイピアの骨」の解説の一部です。
「基本的な積」を含む「ネイピアの骨」の記事については、「ネイピアの骨」の概要を参照ください。
- 基本的な積のページへのリンク