射影的対象とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 射影的対象の意味・解説 

射影的対象

(十分射影対象を持つ から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/03/13 04:23 UTC 版)

圏論において,射影的対象(しゃえいてきたいしょう,: projective object)の概念は射影的加群の概念を一般化する.

の対象 P射影的とは,hom関手

全射を保つことをいう.つまり,任意の射 は任意の全射 YX を通して分解する.

アーベル圏とする.この文脈では,対象 射影的対象であるとは,

完全関手であることをいう.ただし アーベル群である.

射影的対象の双対概念は単射的対象の概念である:アーベル圏 の対象 Q単射的であるとは, から への関手 が完全であることをいう.

充分射影的対象をもつ

アーベル圏とする.充分射影的対象をもつ(Have Enough Projectives)とは, の任意の対象 A に対して, の射影的対象 P完全列

が存在することをいう.言い換えると,射 p: PA全射である.

R1 をもつとする.左 R 加群の圏 を考える. はアーベル圏である. における射影的対象はちょうど射影左 R 加群である.なので R はそれ自身 の射影的対象である.双対的に, における単射的対象はちょうど単射的左 R 加群である.

左(右)R 加群の圏は充分射影的対象を持つ.なぜならば,任意の左(右)R 加群 M に対して,F として M の生成集合 XM でよい)によって生成される自由(したがって射影)R 加群をとることができるからである.すると 標準射影 π: FM が所望の全射である.

参考文献

この記事は、クリエイティブ・コモンズ・ライセンス 表示-継承 3.0 非移植のもと提供されているオンライン数学辞典『PlanetMath』の項目Projective objectの本文を含む

この記事は、クリエイティブ・コモンズ・ライセンス 表示-継承 3.0 非移植のもと提供されているオンライン数学辞典『PlanetMath』の項目Enough projectivesの本文を含む




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「射影的対象」の関連用語

射影的対象のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



射影的対象のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの射影的対象 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS