モチヴィック・コホモロジー
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/09/23 07:11 UTC 版)
モチヴィック・コホモロジー(英: motivic cohomology)とは、代数多様体などのスキームの不変量のひとつである。モチーフに関係する一種のコホモロジーであり、代数的サイクルのチャウ環を特別な場合として含んでいる。代数幾何学と数論における最も深い問題のいくつかはモチヴィック・コホモロジーを理解しようとする試みである。
モチヴィック・ホモロジーとコホモロジー
X を 体 k 上の有限型なスキームとする。代数幾何学の重要な目標の一つは、 X の全ての部分多様体について多くの情報を持っている X のチャウ群を計算することである。X のチャウ群は、位相幾何学におけるボレル・ムーア・ホモロジーが持っているような形式的な性質をいくつか持っているが、いくつかの性質が欠けている。例えば、X の閉部分スキーム Z に対して、局所化系列と呼ばれるチャウ群の完全系列
-
この節は検証可能な参考文献や出典が全く示されていないか、不十分です。(2021年1月)
代数多様体のチャウ群をより一般的なモチヴィック・コホモロジー理論に一般化できるという可能性の最初の明確な兆候は、キレンによるベクトル束のグロタンディーク群 K0 の一般化である代数的K理論の定義と研究(1973)であった。1980年代前半、ベイリンソンとスレはアダムズ作用素を用いると代数的 K 理論(群)に有理数をテンソルしたものが分解できることを観察した。直和因子は(有理数係数の)モチヴィック・コホモロジーと呼ばれている。ベイリンソンとリヒテンバウムによるモチヴィック・コホモロジーの存在と性質についての予想は影響が大きかった。彼らの予想はいくつかを除いてほとんどが証明された。
ブロックによる高次チャウ群(1986)は、体 k 上のスキームの整数係数 (有理数係数ではなく)での最初のモチヴィック・ホモロジーの定義であった(滑らかなスキームの場合には、これによりモチヴィック・コホモロジーも定義される)。X の高次チャウ群の定義はチャウ群の定義の自然な一般化であり、X とアフィン空間の積における代数的サイクルで超平面(単体の面として扱われる)と期待される次元で交叉するものを用いて定義される。
最終的には、ヴォエヴォドスキーによって(ススリンとの共同研究を基礎として)モチーフの導来圏とともに4種類のモチヴィック・ホモロジーとモチヴィック・コホモロジーが2000年に定義された。関連する圏は花村とレヴァイン(Levine)によっても定義されている。
脚注
- ^ Bloch, Algebraic cycles and higher K-groups; Voevodsky, Triangulated categories of motives over a field, section 2.2 and Proposition 4.2.9.
- ^ Voevodsky, Triangulated categories of motives over a field, section 2.2.
- ^ Mazza, Voevodsky, Weibel, Lecture Notes on Motivic Cohomology, Example 13.11.
- ^ Mazza, Voevodsky, Weibel, Lecture Notes on Motivic Cohomology, Theorem 4.1.
- ^ Levine, K-theory and motivic cohomology of schemes I, eq. (2.9) and Theorem 14.7.
- ^ Mazza, Voevodsky, Weibel, Lecture Notes on Motivic Cohomology, Theorem 5.1.
- ^ Voevodsky, On motivic cohomology with Z/l coefficients, Theorem 6.17.
- ^ Jannsen, Motivic sheaves and filtrations on Chow groups, Conjecture 4.1.
- ^ 柳田 2020, p. 29.
- ^ Hanamura, Mixed motives and algebraic cycles III, Theorem 3.4.
- ^ Nori, Lectures at TIFR; Huber and Müller-Stach, On the relation between Nori motives and Kontsevich periods.
参考文献
- “Algebraic cycles and higher K-theory”, Advances in Mathematics 61 (3): 267~304, (1986), doi:10.1016/0001-8708(86)90081-2, ISSN 0001-8708, MR 0852815
- “Mixed motives and algebraic cycles III”, Mathematical Research Letters 6: 61–82, (1999), doi:10.4310/MRL.1999.v6.n1.a5, MR 1682709
- “Motivic sheaves and filtrations on Chow groups”, Motives, Providence, R.I.: American Mathematical Society, (1994), pp. 245–302, ISBN 978-0-8218-1637-0, MR 1265533
- Lecture Notes on Motivic Cohomology, Clay Mathematics Monographs, 2, American Mathematical Society, (2006), ISBN 978-0-8218-3847-1, MR 2242284
- “Triangulated categories of motives over a field”, Cycles, Transfers, and Motivic Homology Theories, Princeton University Press, (2000), pp. 188–238, ISBN 9781400837120, MR 1764202
- “On motivic cohomology with Z/l coefficients”, Annals of Mathematics: 401–438, (2011), arXiv:0805.4430, doi:10.4007/annals.2011.174.1.11, MR 2811603
関連項目
- 移送つき前層
- A¹_ホモトピー理論
外部リンク
- On the relation between Nori motives and Kontsevich periods, arXiv:1105.0865, Bibcode: 2011arXiv1105.0865H
- K-theory and motivic cohomology of schemes I
- Lectures at TIFR, オリジナルの22 Sep 2016時点におけるアーカイブ。
- Harrer Daniel, Comparison of the Categories of Motives defined by Voevodsky and Nori
- Wiesława Nizioł, p-adic motivic cohomology in arithmetic
- 柳田伸太郎 (2020年). “安定性の話”. 2022年1月7日閲覧。
- モチヴィック・コホモロジーのページへのリンク