メビウス関数とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > メビウス関数の意味・解説 

メビウス関数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/12/16 03:53 UTC 版)

メビウス関数(メビウスかんすう、: Möbius function)は、数論組合せ論における重要な関数である。メビウスの輪で有名なドイツの数学者アウグスト・フェルディナント・メビウス (August Ferdinand Möbius) が1831年に紹介したことから、この名が付けられた。

定義

0 を含めない自然数において、メビウス関数 μ(n) は全ての自然数 n に対して定義され、n素因数分解した結果によって -1、0、1 のいずれかの値をとる。

メビウス関数は次のように定義される(ただし 1 は 0 個の素因数を持つと考える):

  • μ(n) = 0 (n平方因子を持つ(1以外の平方数で割り切れる)とき)
  • μ(n) = (-1)kn が相異なる k 個の素因数に分解されるとき)
    • n が相異なる偶数個の素数の積ならば μ(n) = 1
    • n が相異なる奇数個の素数の積ならば μ(n) = -1

計算例

例えば、6 = 2 × 3 であり、素数の 2 乗で割り切れず、素因数の数は 2 で偶数であるから、μ(6) = 1 である。また、12 = 22 × 3 であり、2 の 2 乗で割り切れるため、μ(12) = 0 である。

n = 1, ..., 10 での μ(n) の値を示す[1]

μ(1) = 1, μ(2) = -1, μ(3) = -1, μ(4) = 0, μ(5) = -1, μ(6) =1, μ(7) = -1, μ(8) = 0, μ(9) = 0, μ(10) = 1
50 以下の n に対する μ(n) の値

性質

メビウス関数は乗法的関数である。すなわち、互いに素m, n に対して、

μ(mn) = μ(m)μ(n)

となる。また、m, n が互いに素でなければ、

μ(mn) = 0

である。

基本公式

また次のような基本的な公式が成り立つ。




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「メビウス関数」の関連用語

メビウス関数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



メビウス関数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのメビウス関数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS