メビウス関数
メビウス関数(メビウスかんすう、英: Möbius function)は、数論や組合せ論における重要な関数である。メビウスの輪で有名なドイツの数学者アウグスト・フェルディナント・メビウス (August Ferdinand Möbius) が1831年に紹介したことから、この名が付けられた。
定義
0 を含めない自然数において、メビウス関数 μ(n) は全ての自然数 n に対して定義され、n を素因数分解した結果によって -1、0、1 のいずれかの値をとる。
メビウス関数は次のように定義される(ただし 1 は 0 個の素因数を持つと考える):
- μ(n) = 0 (n が平方因子を持つ(1以外の平方数で割り切れる)とき)
- μ(n) = (-1)k (n が相異なる k 個の素因数に分解されるとき)
- n が相異なる偶数個の素数の積ならば μ(n) = 1
- n が相異なる奇数個の素数の積ならば μ(n) = -1
計算例
例えば、6 = 2 × 3 であり、素数の 2 乗で割り切れず、素因数の数は 2 で偶数であるから、μ(6) = 1 である。また、12 = 22 × 3 であり、2 の 2 乗で割り切れるため、μ(12) = 0 である。
n = 1, ..., 10 での μ(n) の値を示す[1]
- μ(1) = 1, μ(2) = -1, μ(3) = -1, μ(4) = 0, μ(5) = -1, μ(6) =1, μ(7) = -1, μ(8) = 0, μ(9) = 0, μ(10) = 1

性質
メビウス関数は乗法的関数である。すなわち、互いに素な m, n に対して、
- μ(mn) = μ(m)μ(n)
となる。また、m, n が互いに素でなければ、
- μ(mn) = 0
である。
基本公式
また次のような基本的な公式が成り立つ。
メビウス函数
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/02/06 14:14 UTC 版)
「隣接代数 (順序理論)」の記事における「メビウス函数」の解説
ζ は隣接代数において(上で定義した畳み込みに対して)可逆であることを示すことができる。(一般に、隣接代数の元 h が可逆であるための必要十分条件は任意の x に対して h(x,x) が可逆であることである。)ゼータ関数の乗法逆元は、メビウス関数 μ(a, b) である。メビウス関数の値は常に、係数環の単位元 1 の整数倍である。
※この「メビウス函数」の解説は、「隣接代数 (順序理論)」の解説の一部です。
「メビウス函数」を含む「隣接代数 (順序理論)」の記事については、「隣接代数 (順序理論)」の概要を参照ください。
- メビウス函数のページへのリンク