ホッジ双対
(ホッジ作用素 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/10/02 14:12 UTC 版)
![]() |
原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。
|
数学において、ホッジスター作用素(ホッジスターさようそ、Hodge star operator)、もしくは、ホッジ双対(ホッジそうつい、Hodge dual)は、ウィリアム・ホッジにより導入された線型写像である。ホッジ双対は、有限次元の向き付けられた内積空間の外積代数の上で定義されるk -ベクトルのなす空間から(n − k)-ベクトルのなす空間への線形同型である。
他のベクトル空間に対する多くの構成と同様に、ホッジスター作用素は多様体の上のベクトルバンドルへの作用に拡張することができる。 たとえば余接束の外積代数(すなわち、多様体上の微分形式の空間)に対して、ホッジスター作用素を用いてラプラス=ド・ラーム作用素を定義し、コンパクトなリーマン多様体上の微分形式のホッジ分解を導くことができる。
次元と代数
Vを向きつけられた内積空間とし、nをその次元とする。0 ≤ k ≤ n をみたす整数 k に対し、ホッジスター作用素とは、k-ベクトル(k-vectors)から (n − k)-ベクトル空間への同型写像のことである。この写像の k-ベクトルの像は、k-ベクトルのホッジ双対と呼ばれる。k-ベクトルの空間および(n − k)-ベクトルの空間の次元はともに二項係数
- ホッジ双対のページへのリンク