ホッジ双対とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ホッジ双対の意味・解説 

ホッジ双対

(ホッジ作用素 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/10/02 14:12 UTC 版)

数学において、ホッジスター作用素(ホッジスターさようそ、Hodge star operator)、もしくは、ホッジ双対(ホッジそうつい、Hodge dual)は、ウィリアム・ホッジにより導入された線型写像である。ホッジ双対は、有限次元の向き付けられた内積空間外積代数の上で定義されるk -ベクトルのなす空間から(nk)-ベクトルのなす空間への線形同型である。

他のベクトル空間に対する多くの構成と同様に、ホッジスター作用素は多様体の上のベクトルバンドルへの作用に拡張することができる。 たとえば余接束の外積代数(すなわち、多様体上の微分形式の空間)に対して、ホッジスター作用素を用いてラプラス=ド・ラーム作用素を定義し、コンパクトリーマン多様体上の微分形式ホッジ分解を導くことができる。

次元と代数

Vを向きつけられた内積空間とし、nをその次元とする。0 ≤ kn をみたす整数 k に対し、ホッジスター作用素とは、k-ベクトル英語版(k-vectors)から (nk)-ベクトル空間への同型写像のことである。この写像の k-ベクトルの像は、k-ベクトルのホッジ双対と呼ばれる。k-ベクトルの空間および(nk)-ベクトルの空間の次元はともに二項係数

Category:テンソル



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ホッジ双対」の関連用語

ホッジ双対のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ホッジ双対のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのホッジ双対 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS