ケーラー多様体
(ケーラー計量 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/07/28 09:24 UTC 版)
![]() |
原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。
|
数学、特に微分幾何学において、ケーラー多様体(ケーラーたようたい、英: Kähler manifold)とは、複素構造、リーマン構造、シンプレクティック構造という3つが互いに整合性を持つ多様体である。ケーラー多様体 X 上には、ケーラーポテンシャルが存在し、X の計量に対応するレヴィ・チヴィタ接続が、標準直線束上の接続を引き起こす。
滑らかな射影代数多様体はケーラー多様体の重要な例である。小平埋め込み定理により、正の直線束を持つケーラー多様体は、常に射影空間の中へ双正則に埋め込むことができる。
ケーラー多様体の名前はドイツ人数学者エーリッヒ・ケーラー (Erich Kähler) にちなんでいる。
定義
ケーラー多様体は互いに整合性のある複数の構造を持つため,下記のような複数の観点からの定義方法がある。
シンプレクティック多様体として
ケーラー多様体とは、シンプレクティック多様体
- ケーラー計量のページへのリンク