そのほか特別の場合
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/09/26 00:41 UTC 版)
「球函数に対するプランシュレルの定理」の記事における「そのほか特別の場合」の解説
任意の複素半単純リー群あるいは奇数 N に対するローレンツ群 SO0(N, 1) は通常のフーリエ変換に帰着して直接的に扱うことができる。それ以外の実ローレンツ群は、フレンステッド-イェンゼンの降下法により、他の実階数 1 の半単純リー群と同様に演繹することができる。フレンステッド-イェンゼンの降下法は、実半単純リー環が複素半単純リー環の正規実型である場合を扱う際にも適用できる。SL(N, C) の正規実型でもある SL(N, R) に対する特別の場合は Jorgenson & Lang (2001) が詳しく扱っている。 Flensted-Jensen (1978) のやり方は、勝手な実階数を持つ実半単純リー群の広汎なクラスに対して適用できて、 a ∗ {\displaystyle {\mathfrak {a}}^{*}} 上のプランシュレル測度の明示的な積公式を、後述するようなハリッシュ=チャンドラの c-函数による球函数 φλ の展開を用いることなしに導出することができる。これは一般性という点では(ハリッシュ=チャンドラよりは)弱いけれども、このクラスの群に対するプランシュレルの定理へのより簡明な手法を与えてくれる。
※この「そのほか特別の場合」の解説は、「球函数に対するプランシュレルの定理」の解説の一部です。
「そのほか特別の場合」を含む「球函数に対するプランシュレルの定理」の記事については、「球函数に対するプランシュレルの定理」の概要を参照ください。
- そのほか特別の場合のページへのリンク