跡 (線型代数学) フロベニウス内積・ノルム

跡 (線型代数学)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/06/02 14:49 UTC 版)

フロベニウス内積・ノルム

複素 m × n 行列 A に対し、共軛転置とすれば、

が成り立つ。なお、等号成立 A = 0 である。これにより、対応

m × n 行列全体の成す空間における内積の性質を満たす。特に行列の場合には、

はベクトルの点乗積に類似の形であることが確認できる(行列の一列化を通じて実際にベクトルの点乗積として

と記述できる)。アダマール積を使って書くこともできる。しばしばベクトルの演算を行列に対して一般化する際に積のトレースが現れるのはこのような事情による。

この内積に対応するノルムフロベニウスノルムと呼ぶ。これは実際、行列を単に長さ m × n のベクトルと見做したときのユークリッドノルムである。

したがって時に A, B が同じサイズの半正定値行列ならば

が成り立つ[注釈 3]


注釈

  1. ^ tr(XY) = tr(YX)X, Y が正方行列でない場合にも、XY, YX がともに定義できる限りにおいて成り立つ。実際、X = (xij), Y = (yij) とすれば明らかに tr(XY) = ∑i,jxijyji = ∑i,jyjixij = tr(YX).
  2. ^ これは から従う
  3. ^ コーシー=シュワルツの不等式で示せる

出典






英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「跡 (線型代数学)」の関連用語

跡 (線型代数学)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



跡 (線型代数学)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの跡 (線型代数学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS