太陽系 起源と進化

太陽系

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/01 14:04 UTC 版)

起源と進化

原始惑星系円盤の想像図

銀河系には、水素やヘリウム、そして少量の重元素からなる岩石質や有機質の微小な塵(星間塵)を含む星間ガスがある。このような星間ガスが1,000個/cm3を超える数密度となる場合を星間雲といい、内部で水素分子が形成されるようになる。通常、星間雲はごくゆっくりと回転している。星間雲は均質ではなく、密度の偏りがある。この偏りが大きくなって数密度が100億個を超える部分ができることがあり、そうなると一酸化炭素シアン化水素アンモニアなどのさまざまな分子が形成される。これを分子雲と呼ぶ。太陽系は約45億6800万年前に、この分子雲の重力崩壊によって形成された[63][注 10]。この分子雲は数光年ほどの大きさを持ち、太陽と同時にいくつもの恒星を形成した可能性がある[65]。現在の太陽系が形成される領域で、pre-Solar nebula英語版と呼ばれる星雲が形成される[66]。そして、角運動量保存の法則によって、分子雲は収縮時、より速く自転するようになり、原子が頻繁に衝突による運動エネルギーに変換されて、温度が高くなる[65]。自転の加速によって中心に原始太陽が誕生し、当時の光度は現在の10倍、表面温度は約4,000 Kであったとされている[67]。その周囲には、直径約200au[65]にもわたる原始惑星系円盤(もしくは原始惑星系星雲、特に太陽系の場合は原始太陽系円盤とも呼ばれる)が形成され始めた[68][69][70]。そこで形成された、惑星の元となる微惑星が約100億個形成され[71]、塵やガスが合体を繰り返し、より大きな原始惑星へと成長していく[72]。初期の太陽系には、こうした原始惑星が何百個も存在していたとされているが、合体や破壊を繰り返して、現在の惑星や準惑星、小惑星などが形成された。

太陽周辺の温度の高い領域では、沸点が高い金属やケイ酸塩のみが固体として存在でき、このような物質が地球型惑星の水星、金星、地球、火星を形成した。金属元素は、原始惑星系円盤の中でも一部しか存在していないため、地球型惑星は大きく成長することができなかった。地球のような固体惑星がいつ形成されたかについては、星雲ガスがあるときか、消失後か、議論の余地がある。星雲ガスがなくなると、ガス抵抗がなくなるため、原始惑星の軌道が乱れるとその乱れを抑えるものがなくなる。すると、原始惑星は互いの重力相互作用により接近し、軌道が乱されるようになる。微惑星同士の衝突があったように、原始惑星同士も衝突するようになる。星雲ガスがないため衝突は激しいものになり、破壊も合体もいずれも起こるようになる。このような巨大衝突の繰り返しで、金星、地球が形成されたと考えられる。水星と火星は原始惑星の生き残りか、成長がわずかであったものであろう。地球のは、地球形成末期に起きた巨大衝突の産物であるとする説(ジャイアント・インパクト説)が有力である。

巨大惑星(木星型惑星と天王星型惑星)は、現在の火星軌道と木星軌道にある雪線の外側で形成された。これらの惑星を形作っている氷結した揮発性の化合物は、地球型惑星を形成している金属元素やケイ酸塩よりも豊富に存在していたため、これらの惑星は水素とヘリウムからなる分厚い大気を取り込むのに十分な、地球の10倍の質量を持った大きな原始惑星にまで成長することができた[73]。木星と土星の質量が異なるのは、土星形成の後期に、何らかの理由で星雲ガスが消失し、材料となるガスそのものがなくなったためであり、天王星、海王星の質量が小さい段階にとどまったのも、この2つの惑星は星雲終末期にガスの取り込みが始まったため、あまり成長できずに終わったためであると考えられている。小惑星帯、カイパーベルト、オールトの雲は、惑星になりきれなかった残骸となった小天体が密集したものとされており、ニースモデルでは、これらの領域の形成と、巨大惑星が形成された位置、さまざまな重力による作用を介して、どのように今の軌道に落ち着いたかを示している。

太陽の進化の時系列を簡潔にまとめた図

形成から5000万年までに、原始太陽の中心にある水素の圧力と密度が熱核融合を起こすのに、十分大きくなったとされている[74]。温度や反応速度、圧力、密度は太陽が静水圧平衡を満たすまで上昇し、やがて熱の圧力と自身の重力が等しくなり、太陽は主系列星となった[75]。この主系列星の段階は約100億年続くとされている[76]。やがて、太陽から放出した太陽風が太陽圏(ヘリオスフィア)を形成し、周囲の原始惑星系円盤が強い紫外線によって宇宙空間に放出されたか、原始太陽に落下していったことにより、惑星の成長はほぼ落ち着いた。主系列星になったころの太陽の光度は現在の約70パーセントで、徐々に増光して今に至る[77]

赤色巨星となった太陽と、高温のため、水や大気を失った地球の想像図。

太陽系は、太陽の中心核にある水素が、すべて核融合反応によってヘリウムになる約50億年後[76]までは、現在とほとんど変わらない構造を維持するとされている。ヘリウムによる核融合反応は主系列星の段階を終えたことを意味している。このとき、太陽の中心核の内部では、内部に形成されたヘリウムの周囲に沿って分布している水素が核融合反応を起こしており、それによって中心核は収縮していき、放出されるエネルギーは現在よりもはるかに大きくなるとされている[78]。そして、太陽の外層が膨張を始め、直径は現在の256倍にまで膨れ上がり、赤色巨星へ進化する[76]。表面積が大きくなるため表面温度は低下していき、最低で2,600 Kまで低下する可能性がある。このころには、地球上の水はすべて蒸発し、生物が存在することはできなくなっている。中心核では収縮が続くため温度が上昇し、その結果、ヘリウムによる核融合反応が始まる。それにより、太陽は一時的に安定し、直径も現在の11 - 19倍にまで小さくなる[78]。しかし、太陽はより重い元素で核融合反応を起こすほどの十分な大きさを持っていないため、核融合反応は徐々に弱くなり、この安定期間は1億3000万年しか持続されないと考えられている[78]。最終的に外層は吹き飛ばされ、中心核は地球ほどの大きさと、現在の太陽の半分の質量を持った白色矮星となって残される[79]。放出された外層は、太陽を形成していた物質の一部と、核融合反応によって新たに合成された、炭素などの重元素を含んでおり、やがて惑星状星雲となる。







英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「太陽系」の関連用語

太陽系のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



太陽系のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの太陽系 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS