プラネット・ナイン 存在を支持する証拠

プラネット・ナイン

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/04/02 02:25 UTC 版)

存在を支持する証拠

プラネット・ナインの重力的な影響は、以下の太陽系の5つの特異な点を説明する可能性がある[68]

  • 極端に遠い太陽系外縁天体 (extreme trans-Neptunian objects, eTNOs) の軌道のクラスタリング
  • 海王星の影響から分離したセドナのような天体の大きな近日点距離
  • 8つの既知の惑星の軌道に対しておおむね垂直な軌道を持つ eTNOs の大きな軌道傾斜角
  • 軌道長半径が 100 au 未満で大きな軌道傾斜角を持つ太陽系外縁天体
  • 太陽の自転軸が主要な惑星の軌道平面に対して 6° の傾きを持つこと

プラネット・ナインは、セドナのような天体が持つ大きな近日点距離を説明するメカニズムを介して、eTNOs の軌道のクラスタリングを説明するために存在が提唱された天体である。プラネット・ナインが他の天体に及ぼしうる効果のうち、既知の惑星の軌道に対して垂直な軌道を持つ太陽系外縁天体への影響は予想されていなかったものであり、その他の2つの効果は仮説が提唱された後のさらなる分析の結果明らかになったものである。上記の問題点を説明するための別のメカニズムも提唱されているが、上記5つの全てを説明できるのはプラネット・ナインの重力的な影響のみである。しかしプラネット・ナインの重力はその軌道を横切る他の天体の軌道傾斜角も上昇させるため、短周期彗星の軌道傾斜角の分布が現在観測されているよりも広いものになってしまうという指摘もある[69]

観測:近日点距離が大きい天体の軌道の偏り

大きな軌道長半径を持つ太陽系外縁天体軌道要素に偏りがあることは、2014年にトルヒージョとシェパードによって初めて指摘された。彼らはセドナと2012 VP113の軌道の間に見られる類似性を指摘した[22]。プラネット・ナインのような天体が存在しなければこれらの軌道はランダムに分布するはずであり、軌道の配置には特定の傾向は見られないはずである。トルヒージョとシェパードはさらなる解析を行い、近日点距離が 30 au より大きく、かつ軌道長半径が 150 au より大きい12個の外縁天体の近日点引数が 0° 付近に偏っていることを指摘した。つまりこれらの天体はみな、太陽に最も接近する時に黄道面を下から上へ通過する軌道を持っていることを意味している。トルヒージョとシェパードは、これは海王星軌道より遠方にある未知の重い天体によって、古在メカニズムを介して引き起こされていると提唱した[22]。同程度の軌道長半径を持つ天体の場合、古在メカニズムは天体の近日点引数を 0° か 180° 付近に制約する働きがある。この軌道の制約により、離心率と傾斜角を持った軌道にある外縁天体は惑星への近接遭遇を回避することができる。なぜなら外縁天体が惑星の軌道平面を横切るのは天体が近日点と遠日点付近にいるときであり、軌道の十分上か下にいる時に惑星の軌道を横切るからである[70][71]。しかし、外縁天体の軌道が古在メカニズムによってどのように揃うようになるかについてのトルヒージョとシェパードの仮説は、さらなる解析と証拠に取って代わられることとなる。

バティギンとブラウンは、トルヒージョとシェパードによる上記の仮説を否定するつもりで大きな軌道長半径を持った太陽系外縁天体の軌道の調査を行った[2]。彼らはトルヒージョとシェパードによる解析に用いられた外縁天体のうち、海王星に接近するため軌道が不安定になるものや、海王星との平均運動共鳴に影響されるものを取り除いて解析を行った。その結果、残った6つの天体 (セドナ、2012 VP113、2004 VN1122010 GB174、2000 CR105、2010 VZ98) の近日点引数が 318° ± 8° に集まっていることが判明した。この発見は、古在メカニズムによって近日点引数が 0° か 180° に揃うという傾向とは一致しないものであった[2][注 1]

バティギンとブラウンはさらに、軌道長半径が 250 au より大きく、近日点距離が 30 au を超える極端な太陽系外縁天体6つ(セドナ、2012 VP113、2004 VN112,、2010 GB174、2007 TG422、2013 RF98)の軌道について、近日点が空間的におおむね同じ方向に揃っており、その結果として太陽に最も接近した際の位置を表す近日点黄経英語版が集まっていることも発見した。6個の天体の軌道は黄道面に対して傾いており、おおむね同一平面に存在する。そのため天体が黄道面を下から上へ通過する位置を示す昇交点黄経も集まっている。彼らは、この軌道要素のクラスタリングが偶然発生する確率はわずか 0.007% であると計算している[2][72][73]。これらの6つの天体は、6つの異なる望遠鏡を用いた6つの異なるサーベイによって発見されたものである。そのため、例えば望遠鏡が空の特定の領域を観測していたなどの観測バイアスによって軌道要素の偏りが生まれている可能性は低いとされる。これらの天体の軌道長半径と軌道離心率はそれぞれ異なることから、近日点の場所と昇交点の変化もしくは歳差は異なる速度で発生し、その結果として軌道要素の偏りは数億年のうちになまされてしまうはずである[注 2]。そのためこの偏りは恒星の通過などの過去の事象では起こり得ず、太陽を公転する天体の重力場によって維持されている可能性が最も高いことを示唆している[2]

トルヒージョとシェパードは後の論文で、軌道長半径が 150 au を超える太陽系外縁天体の近日点黄経と近日点引数の間の相関について指摘している[74]。近日点黄経が 0°〜120° のものは近日点引数が 280°〜360° の間にあり、近日点黄経が 180°〜340° のものは近日点引数が 0°〜40° の間にある。この相関の統計的有意性は 99.99% である。彼らは、この相関はこれらの天体の軌道が重い惑星との近接遭遇を起こしていないことによることを示唆した[74]

カイパーベルトの外側に安定した軌道を持つ6個の太陽系外縁天体とプラネット・ナインの比較[17][75]
名前 P
()
a
(au)
q
(au)
e ω
(°)
視等級 直径
(km)
2012 VP113 4287 263.89 80.31 0.70 292.9 23.4 600
2013 RF98英語版 5862 325.1 36.29 0.89 316.5 24.4 80
2004 VN112英語版 5736 320.42 47.33 0.85 327.2 23.3 200
2010 GB174 7159 371.45 48.67 0.87 347.7 25.2 200
2007 TG422英語版 11304 503.69 35.58 0.93 285.8 21.9 200
セドナ 11429 507.38 76.05 0.85 311.5 21.0 1000
プラネット・ナイン 〜15000 〜700 〜200 0.6 150 >22 26000 - 52000
極端な太陽系外縁天体の軌道
極端に遠い太陽系外縁天体の軌道と、仮説上のプラネット・ナインの軌道(緑線)。
13個の極端な太陽系外縁天体の現在位置の拡大図。

シミュレーション:軌道の偏りの再現

極端に遠方にある太陽系外縁天体 (extreme-trans Neptunian objects, eTNOs) の軌道のクラスタリングとその大きな近日点距離は、プラネット・ナインの影響を含めたシミュレーションによって再現できることが分かっている。バティギンとブラウンによって行われたシミュレーションでは、ランダムな配置で始めた大きな軌道長半径を持つ天体群は[注 3]、大きな軌道離心率を持った軌道にある重い遠方の天体によって、空間的に制約されたおおむね同じ線上、同じ平面上の軌道のグループに集められた。これらの天体の近日点は同じ方向に揃う傾向を示し、また軌道も同じ平面上に揃う傾向が見られた。これらの天体の多くはセドナのように大きな近日点距離を持つ軌道に入り、また予想外の結果として、いくつかは黄道面に対してほぼ垂直な軌道に入った。このような軌道を持つ天体が過去に観測されていることにバティギンとブラウンは後で気が付いた[2]

6つの eTNOs の軌道の分布を最もよく再現するシミュレーションのパラメータは、仮説上の遠方天体の質量を10地球質量とし[注 4]、以下のような軌道に置いたものである。

これらのパラメータを仮定したプラネット・ナインのシミュレーションでは、太陽系外縁天体の特性によって異なる影響をもたらす。軌道長半径が 250 au より大きい外縁天体はプラネット・ナインに対して反対方向に強く揃った軌道になり、近日点がプラネット・ナインの近日点の反対側に来る。軌道長半径が 150〜250 au の天体はプラネット・ナインと緩く揃った軌道になり、近日点はプラネット・ナインの近日点と同じ方向に来る。軌道長半径が 150 au より小さい天体にはほとんど影響を及ぼさない[9]

プラネット・ナインが取り得る他の軌道の調査も行われており、軌道長半径が 400〜1,500 au、軌道離心率が最大で0.8まで、軌道傾斜角は広い範囲で調べられている。これらの軌道を仮定したシミュレーションでは多様な結果が得られている。バティギンとブラウンは、プラネット・ナインが大きな軌道傾斜角を持っていた場合は eTNOs も同様の傾きになりやすくなるが、軌道の反対側への偏り度合いは減少することを発見した[9]。2017年の Juliette C. Becker らによるプラネット・ナインの存在を考慮したシミュレーションでは、プラネット・ナインの軌道離心率が小さい場合は eTNOs の軌道はより安定だが、軌道の反対方向への偏りはプラネット・ナインの軌道離心率が大きいほど強くなることが示された[77]。また S. M. Lawler らはプラネット・ナインが円軌道を持っていた場合は軌道共鳴に捕獲される天体は少ないこと、大きな軌道傾斜角の軌道に到達する天体も少ないことを示した[78]。さらに Jessica Cáceres らによる研究では、プラネット・ナインが近日点距離の小さい軌道を持っていた場合は eTNOs の軌道はよく揃うようになるが、近日点距離は 90 au よりも大きい必要があることを示した[79]。プラネット・ナインの軌道要素と質量の考えられる組み合わせは多数あるものの、太陽系で観測されている外縁天体の軌道要素の偏りをより良く予測するシミュレーションは他にはない。さらなる遠方の太陽系外縁天体が発見されることによって、プラネット・ナイン仮説はさらに支持されるか、もしくは否定されるだろう。

力学:太陽系外縁天体の軌道に与える影響

プラネット・ナインの軌道長半径が 250 au だった場合の eTNOs の長期的な進化[80][81]。青:反対側に揃った天体、赤:同じ側に揃った天体、緑、準安定な天体、オレンジ:循環する天体。黒線より上が交差軌道。

プラネット・ナインは eTNOs の軌道をいくつかの効果の組み合わせを介して変化させる。非常に長い時間スケールでは、プラネット・ナインは eTNOs の軌道にトルクを与える。このトルクの強さは eTNOs の軌道とプラネット・ナインの軌道の配置によって変わる。角運動量の交換によって近日点距離は増加して eTNOs はセドナのような軌道になり、その後再び近日点距離は下がり数億年後には元の軌道に戻る。近日点の方向の動きも軌道離心率が小さい時は逆になり、天体はプラネット・ナインの反対側に揃った状態に保たれるか(図中の青線)、同じ側に揃った状態に保たれる(赤線)。

短い時間スケールではプラネット・ナインとの平均運動共鳴が eTNOs の軌道位相を保護する。これは eTNOs の軌道長半径をわずかに変化させ、プラネット・ナインの軌道と同期させて近接遭遇を防ぐことで軌道を安定化する。海王星や他の巨大惑星の重力的な影響がある場合やプラネット・ナインの軌道傾斜角が大きい場合は、この保護の効果は弱くなる。このため天体が共鳴の間を移動することによる軌道長半径のカオス的な変化がもたらされる。この共鳴には百万年の時間スケールの 27:17 の高次の共鳴も含まれる[81]。しかし、eTNOs とプラネット・ナインがどちらも傾いた軌道にいる場合は、eTNOs が生き残るためには平均運動共鳴は必要ではないと考えられる[82]

天体の軌道の極は、太陽系のラプラス面の極の周りを歳差運動するか、もしくは循環する。大きな軌道長半径ではラプラス面はプラネット・ナインの軌道平面に向かって歪む。このため eTNOs の軌道面の極は平均的には一方に傾き、昇交点黄経はクラスタリングを起こす[81]

大きな軌道長半径を持った垂直軌道にある天体

大きな軌道傾斜角(黄道面にほぼ垂直)を持った5つの天体の軌道が青緑色の楕円で示されている。プラネット・ナインの想定される軌道はオレンジ色で示されている。

プラネット・ナインは eTNOs を黄道面に対してほぼ垂直な軌道に移動させる可能性があるとされている[83][84]。いくつかの天体は 50° よりも大きい軌道傾斜角を持ち、軌道長半径が 250 au を超える軌道にあることが観測で判明している[85][86]。これらの軌道は、低い軌道傾斜角を持っていたいくつかの eTNOs が低い軌道離心率の軌道に到達した際に、プラネット・ナインと永年共鳴を起こすことで生成される。この共鳴は小天体の軌道離心率と軌道傾斜角を増加させ、eTNOs を小さい近日点距離を持った大きな傾斜角の軌道へと移動させる。このような天体は、近日点付近にいる際によく観測される。その後 eTNOs は低軌道離心率の逆行軌道へと進化し、再び離心率と傾斜角が小さい軌道に戻る前に高軌道離心率の垂直な軌道の第二段階を経由する。

プラネット・ナインとの永年共鳴は、軌道の近日点引数と近日点黄経の線型結合を引き起こす。古在メカニズムとは異なり、この共鳴では天体がほぼ垂直な軌道になった時に軌道離心率が最大に到達する。バティギンと Morbidelli によるシミュレーションでは、この軌道進化は比較的一般的に起こるものであり、安定な軌道にある天体のうち 38% は少なくとも一回この過程を経験していると推定されている[81]。これらの天体の近日点引数はプラネット・ナインの付近か反対側に集まり、また天体の近日点距離が最も小さくなっている時は、昇交点黄経はプラネット・ナインの昇交点黄経から前後 90° の値に集まる[2][82]。これは、このような天体の軌道分布が既知の巨大惑星との遠方での遭遇に起因すると考えた場合とは異なり、観測結果とおおむね一致している[2]

高軌道傾斜角天体の軌道

軌道長半径が 100 au 未満で大きな軌道傾斜角を持つ太陽系外縁天体は、プラネット・ナインと他の巨大惑星の両方の影響を受けている可能性がある。軌道が垂直な状態になった eTNOs は近日点距離が小さいため、海王星やその他の巨大惑星の軌道と交差しうる。これらの惑星と遭遇することによって eTNOs の軌道長半径は 100 au 未満にまで小さくなる。こうなるともはやこの天体はプラネット・ナインの影響を受けなくなり、(528219) 2008 KV42 英語版のような軌道になる。これらの天体の最も長寿命な軌道分布は非一様であると予測されている。大部分は近日点距離が 5〜35 au の範囲であり、軌道傾斜角は 110° 未満であると予想される。またそれらとは離れた軌道要素の、軌道傾斜角が 150° 付近で近日点距離が 10 au 付近にも分布していると予想される[66]。これらの天体は、これまではオールトの雲に起源を持つという説がこれまでに提唱されていた[87]。オールトの雲は、太陽から 2,000〜200,000 au の距離を取り囲む理論上の氷微惑星の雲である。

オールトの雲と彗星

プラネット・ナインは彗星の源となる領域やその軌道傾斜角の分布にも影響を与えると考えられる。太陽系形成モデルの一つであるニースモデルでの巨大惑星の移動のシミュレーションでは、プラネット・ナインの影響を含めた場合はオールトの雲に移行する微惑星は少なくなる。オールトの雲に移行しなかった他の微惑星は、プラネット・ナインによって力学的に支配される天体の雲 (集団) の中に取り込まれる。このプラネット・ナイン雲は eTNOs および垂直な軌道を持つ天体からなり、250〜3,000 au の軌道長半径まで広がり、合計質量はおよそ0.3〜0.4地球質量だろうと考えられている[69][78]

プラネット・ナイン雲の中にある天体の近日点距離が他の惑星と遭遇を起こすほどに小さくなった場合、いくつかは散乱され太陽系内部に侵入する軌道になり、これらは彗星として観測されるようになる。もしプラネット・ナインが存在する場合、このようにして太陽系内部に入ってくる天体はハレー彗星型の彗星のおよそ3分の1を占めるだろうと考えられる。プラネット・ナインは、軌道長半径が 50 au を超え海王星の軌道付近に近日点を持つ散乱円盤天体の軌道にも変化を与え、これらの天体の軌道傾斜角を増加させる。これによってこのような天体に由来を持つ木星族彗星の軌道傾斜角を増加させ、観測で分かっているよりも彗星の軌道傾斜角の分布を広くする[69][88]

太陽の自転軸傾斜

太陽の自転軸は惑星の軌道面に対して傾いているが、プラネット・ナインはこの傾斜に関与している可能性がある。太陽系の形成と進化に関するモデルでは、太陽の赤道面と惑星の軌道は同じ平面上になるはずであることを予測する。しかし実際には、太陽の自転軸は巨大惑星の軌道平面に対しておよそ 6° 傾いていることが分かっている。プラネット・ナインは惑星の軌道にトルクを加えることで太陽の自転軸傾斜を生み出し、惑星の軌道面をコマのように短い円弧で歳差させることができる。プラネット・ナインは他の惑星から大きく傾いた軌道を持っていること、また軌道長半径が非常に大きいため他の太陽系の惑星よりも多くの角運動量を持っていることから、この歳差を引き起こす可能性がある[89]

Elizabeth Bailey、バティギン、ブラウンのグループ[90]と、Rodney Gomes、Rogerio Deienno と Alessandro Morbidelli のグループ[67]によって同時期に独立して行われた解析モデルとコンピュータシミュレーションを用いた研究、さらに Dong Lai によって後に行われた研究では[91]、太陽の自転軸の傾きとその大きさの両方は、プラネット・ナインによって及ぼされる重力トルクによって説明することが可能であるということが示されている。これらの研究結果はプラネット・ナイン仮説と一致するものであるが、プラネット・ナインの存在を証明するものではない。なぜなら、太陽系での太陽の自転軸と惑星の軌道平面のずれを説明するモデルとしては、原始惑星系円盤原始星時代の太陽との磁気的相互作用や、太陽への非対称な質量降着、太陽が伴星を失ったことが原因とするもの、他の恒星との遭遇によるものなど、他の可能性も考えられるからである[90]







英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「プラネット・ナイン」の関連用語

プラネット・ナインのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



プラネット・ナインのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのプラネット・ナイン (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS