長さの収縮 長さの収縮の概要

長さの収縮

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/31 04:49 UTC 版)

歴史

長さの収縮は、マイケルソン・モーリーの実験の否定的な結果を説明し、静止エーテルの仮説を救うためにジョージ・フィッツジェラルド(1889)とヘンドリック・ローレンツ(1892)により仮定された(ローレンツ・フィッツジェラルド収縮仮説)[2][3]。フィッツジェラルドとローレンツの両者は、運動する電荷がつくる電場が変形するという事実に言及したが(オリヴァー・ヘヴィサイドにちなむヘヴィサイド楕円体、ヘヴィサイドは1888年に電磁理論からこれを導出した)、当時分子間力が電磁力と同じふるまい方をすると推測するに十分な理由がなかったため、長さの収縮はアドホックな仮説と見なされた。1897年、ジョゼフ・ラーモアが全ての力が電磁気的な起源を持つと考えられるモデルを開発し、長さの収縮はこのモデルの直接的な結果として現れた。しかしアンリ・ポアンカレ(1905)により電磁気力だけでは電子の安定性を説明できないことが示された。そのため彼は別のアドホックな仮説を導入しなければならなかった。それは非電気的結合力(ポアンカレ応力)であり、これを用いてポアンカレは電子の安定性を確実にし、長さの収縮を動力学的に説明し、それにより静止エーテルに対する運動を覆い隠した[4]

最終的には、アルベルト・アインシュタイン(1905)が、仮想的なエーテルの中を動く運動を用いずに、特殊相対性理論を使うことでこの収縮を説明し、我々の空間、時間、同時性の概念を変え、収縮仮説からアドホックな特徴を初めて[4]完全に取り除いた[5]。アインシュタインの考えは、自身の4次元時空の概念を導入することで全ての相対論的効果の幾何学的解釈を論証したヘルマン・ミンコフスキーによりさらに洗練された[6]

相対性理論の基礎

特殊相対性理論においては、観測者は同期する時計の無限格子造りに対して事象を測定する。

初めに静止している物体と動いている物体の長さを測定する方法を慎重に検討する必要がある[7]。ここで「物体」とは常に相互に静止している、すなわち同じ慣性系で静止している端点を持つ距離を意味するだけである。観測者(もしくは測定器)と観測される物体との間の相対速度がゼロであれば、物体の固有長

長さの収縮: 3本の青の棒がSで静止し、3本の赤の棒がS'で静止している。AとDの左端がxの軸上で同じ位置に着いた瞬間、それぞれの棒の長さを比較する。SではAの左側とCの右側の同時位置はDとFのそれより離れているが、S'ではDの左側とFの右側の同時位置はAとCのそれより離れている。

観測者はポアンカレ・アインシュタイン同期に従い光信号を交換するか(a)、「スロークロック輸送」(1つの時計がすなわち1つの時計が消える輸送速度の限界で時計の列に沿って輸送される)(b)のどちらかにより同期された時計の列をinstallする。同期処理が終了すると、物体は時計の列に沿って移動され、全ての時計が物体の左端もしくは右端が通過した正確な時間を記憶する。その後、観測者は物体の左端が通過した時刻を記憶している時計Aと、物体の右端が「同時に」通過した時刻を記憶する時計Bの位置を見るだけで良い。距離ABが運動した物体の長さに等しいことは明らかである[7]。この方法を用いて運動している物体の長さを測定するためには同時性の定義が重要である。

別の方法は固有時間を示す時計(棒の静止系の時計により測定される時間内に端点から端点へ移動する)を使うことである。棒の長さは移動時間に速度を掛け算することで計算することができ、それにより棒の静止系では、時計の静止系ではとなる[8]

ニュートン力学では、同時性と時間の長さは絶対的なものであるため、どちらの方法でもが等しいことが得られる。しかし、相対性理論では、同時性の相対性と時間の遅れに関連するすべての慣性系における光速不変により、この等価性が壊れる。第1の方法では1つの系の観測者は物体の端点を同時に測定したというが、他の全ての慣性系の観測者は物体の端点は同時に測定されていないというであろう。第2の方法では、時間は時間の遅れにより等しくなく、結果として長さも異なる。

全ての慣性系での測定値の間の偏差はローレンツ変換と時間の遅れの式により与えられる(導出参照)。固有長は変化せず、常に物体の最大の長さを示し、別の慣性系で測定された同じ物体の長さは固有長よりも短くなることが分かる。この収縮は運動の線に沿ってのみ起こり、次の関係式で表すことができる。

ここで

Lは物体に対して相対的な運動をする観測者により観測される長さ
L0は固有長(静止系での物体の長さ)
γ(v)と定義されるローレンツ因子
vは観測者と運動する物体の間の相対速度
cは光速

元の式のローレンツ因子を置き換えると、次の式になる。

この式ではLとL0の両方は物体の運動の線に平行に測定される。相対運動中の観測者の場合、物体の長さは、物体の両端の同時に測定された距離を引き算することにより測定される。より一般的な変換はローレンツ変換参照。光速に非常に近い速度で運動する物体を静止状態で観測する観測者は、進行方向の物体の長さを非常にゼロに近い長さとして観測する。

速度1340万 m/s (3000万mph, 0.0447c)では収縮した長さは静止時の99.9%であり、速度4230万 m/s (9500万mph, 0.141c)では長さは99%である。速度の大きさが光速に近づくにつれてこの効果は顕著になる。

対称性

相対性理論の原理(これによると自然法則はすべての慣性座標系において同じ形を仮定しなければならない)は、長さの収縮が対照的であることを要求する。棒が慣性系Sで静止している場合、その長さはS'で収縮するが、棒がS'で静止している場合、S'で固有長を持ち、長さはSで収縮する。ローレンツ変換が幾何学的に4次元時空における回転に対応しているため、対称ミンコフスキーダイアグラム(Loedelダイアグラム)を用いて鮮やかに説明することができる[9][10]


  1. ^ Dalarsson, Mirjana; Dalarsson, Nils (2015). Tensors, Relativity, and Cosmology (2nd ed.). Academic Press. p. 106–108. ISBN 978-0-12-803401-9. https://books.google.com/books?id=KZOZBgAAQBAJ  Extract of page 106
  2. ^ FitzGerald, George Francis (1889), “The Ether and the Earth's Atmosphere”, Science 13 (328): 390, Bibcode1889Sci....13..390F, doi:10.1126/science.ns-13.328.390, PMID 17819387, https://zenodo.org/record/1448315 
  3. ^ Lorentz, Hendrik Antoon (1892), “The Relative Motion of the Earth and the Aether”, Zittingsverlag Akad. V. Wet. 1: 74–79 
  4. ^ a b Pais, Abraham (1982), Subtle is the Lord: The Science and the Life of Albert Einstein, New York: Oxford University Press, ISBN 0-19-520438-7 
  5. ^ Einstein, Albert (1905a), “Zur Elektrodynamik bewegter Körper”, Annalen der Physik 322 (10): 891–921, Bibcode1905AnP...322..891E, doi:10.1002/andp.19053221004, http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_891-921.pdf . See also: English translation.
  6. ^ Minkowski, Hermann (1909), “Raum und Zeit”, Physikalische Zeitschrift 10: 75–88 
  7. ^ a b c Born, Max (1964), Einstein's Theory of Relativity, Dover Publications, ISBN 0-486-60769-0, https://archive.org/details/einsteinstheoryo0000born 
  8. ^ Edwin F. Taylor; John Archibald Wheeler (1992). Spacetime Physics: Introduction to Special Relativity. New York: W. H. Freeman. ISBN 0-7167-2327-1. https://archive.org/details/spacetimephysics00edwi_0 
  9. ^ Albert Shadowitz (1988). Special relativity (Reprint of 1968 ed.). Courier Dover Publications. pp. 20–22. ISBN 0-486-65743-4. https://archive.org/details/specialrelativit0000shad 
  10. ^ Leo Sartori (1996). Understanding Relativity: a simplified approach to Einstein's theories. University of California Press. pp. 151ff. ISBN 0-520-20029-2 
  11. ^ Feynman, Richard P.; Leighton, Robert B.; Sands, Matthew (2013-01-01). he Feynman Lectures on Physics, Desktop Edition Volume II: The New Millennium Edition (illustrated ed.). Basic Books. p. 13–6. ISBN 978-0-465-07998-8. https://books.google.com/books?id=uaQfAQAAQBAJ  Extract of page 13-6
  12. ^ E M Lifshitz, L D Landau (1980). The classical theory of ields. Course of Theoretical Physics. Vol. 2 (Fourth ed.). Oxford UK: Butterworth-Heinemann. ISBN 0-7506-2768-9. http://worldcat.org/isbn/0750627689 
  13. ^ a b Sexl, Roman; Schmidt, Herbert K. (1979), Raum-Zeit-Relativität, Braunschweig: Vieweg, ISBN 3-528-17236-3 
  14. ^ Brookhaven National Laboratory. “The Physics of RHIC”. 2013年1月1日閲覧。
  15. ^ Manuel Calderon de la Barca Sanchez. “Relativistic heavy ion collisions”. 2013年1月1日閲覧。
  16. ^ Hands, Simon (2001). “The phase diagram of QCD”. Contemporary Physics 42 (4): 209–225. arXiv:physics/0105022. Bibcode2001ConPh..42..209H. doi:10.1080/00107510110063843. 
  17. ^ Williams, E. J. (1931), “The Loss of Energy by β -Particles and Its Distribution between Different Kinds of Collisions”, Proceedings of the Royal Society of London. Series A 130 (813): 328–346, Bibcode1931RSPSA.130..328W, doi:10.1098/rspa.1931.0008 
  18. ^ DESY photon science. “What is SR, how is it generated and what are its properties?”. 2016年6月3日時点のオリジナルよりアーカイブ。2013年1月1日閲覧。
  19. ^ DESY photon science. “FLASH The Free-Electron Laser in Hamburg (PDF 7,8 MB)”. 2013年1月1日閲覧。
  20. ^ [1]
  21. ^ Miller, A.I. (1981), “Varičak and Einstein”, Albert Einstein's special theory of relativity. Emergence (1905) and early interpretation (1905–1911), Reading: Addison–Wesley, pp. 249–253, ISBN 0-201-04679-2, https://archive.org/details/alberteinsteinss0000mill/page/249 
  22. ^ a b Einstein, Albert (1911). “Zum Ehrenfestschen Paradoxon. Eine Bemerkung zu V. Variĉaks Aufsatz”. Physikalische Zeitschrift 12: 509–510. ; Original: Der Verfasser hat mit Unrecht einen Unterschied der Lorentzschen Auffassung von der meinigen mit Bezug auf die physikalischen Tatsachen statuiert. Die Frage, ob die Lorentz-Verkürzung wirklich besteht oder nicht, ist irreführend. Sie besteht nämlich nicht "wirklich", insofern sie für einen mitbewegten Beobachter nicht existiert; sie besteht aber "wirklich", d. h. in solcher Weise, daß sie prinzipiell durch physikalische Mittel nachgewiesen werden könnte, für einen nicht mitbewegten Beobachter.
  23. ^ Kraus, U. (2000). “Brightness and color of rapidly moving objects: The visual appearance of a large sphere revisited”. American Journal of Physics 68 (1): 56–60. Bibcode2000AmJPh..68...56K. doi:10.1119/1.19373. http://www.tempolimit-lichtgeschwindigkeit.de/sphere/sphere.pdf. 
  24. ^ Weisskopf, Victor F. (1960). “The visual appearance of rapidly moving objects”. Physics Today 13 (9): 24–27. doi:10.1063/1.3057105. https://semanticscholar.org/paper/43697c6c0f27695068e4d017a1f0f9a6878a2bda. 
  25. ^ Penrose, Roger (2005). The Road to Reality. London: Vintage Books. pp. 430–431. ISBN 978-0-09-944068-0 
  26. ^ Can You See the Lorentz-Fitzgerald Contraction? Or: Penrose-Terrell Rotation
  27. ^ Bernard Schutz (2009). “Lorentz contraction”. A First Course in General Relativity. Cambridge University Press. p. 18. ISBN 978-0521887052. https://books.google.com/books?id=V1CGLi58W7wC&pg=PA18&dq=%22lorentz+contraction%22 
  28. ^ David Halliday, Robert Resnick, Jearl Walker (2010), Fundamentals of Physics, Chapters 33-37, John Wiley & Son, pp. 1032f, ISBN 978-0470547946 


「長さの収縮」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  長さの収縮のページへのリンク

辞書ショートカット

すべての辞書の索引

「長さの収縮」の関連用語

長さの収縮のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



長さの収縮のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの長さの収縮 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS