太陽 構造

太陽

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/09/18 05:35 UTC 版)

構造

太陽の構造:
1. 太陽核
2. 放射層
3. 対流層
4. 光球
5. 彩層
6. コロナ
7. 太陽黒点
8. 粒状斑
9. 紅炎

太陽はほぼ完全な球体であり、その扁平率は0.01%以下である。太陽には、地球型惑星衛星などと異なり、はっきりした表面が存在しない[19]

太陽は、中心太陽核)・放射層対流層光球彩層遷移層コロナからなる[20][21]可視光にて地球周辺から太陽を観察した場合の視野角と概ね一致するため、このうち光球を便宜上太陽の表面としている[9]。また、それより内側を光学的に観測する手段がない[22]。太陽半径を太陽中心から光球までの距離として定義する。光球には周囲よりも温度の低い太陽黒点や、まわりの明るい部分であるプラージュと呼ばれる領域が存在することが多い[9]。光球より上層の、光の透過性の高い部分を太陽大気と呼ぶ。プラズマ化した太陽大気の上層部は太陽重力による束縛を受けにくい。このため惑星間空間に漏れ出し海王星軌道まで及んでいる。これを太陽風と呼び、オーロラの原因ともなる[23]

太陽は光球より内側が電磁波に対して不透明であるため、内部を電磁波によって直接見ることができない。太陽内部についての知識は、太陽の大きさ、質量、総輻射量、表面組成・表面振動(5分振動)などの観測データを基にした理論解析(日震学)によって得るしか方法がないのが現実である。理論解析においては、太陽内部の不透明度と熱核融合反応を量子力学により推定し、観測データによる制限を境界条件とした数値解析を行う。よって、太陽中心部の温度、密度などはこのような解析によって得られた数値でありなおかつ推定値でもある。

中心核

太陽の中心には半径10万キロメートルの核(中心核)があり[20]、これは太陽半径の約2割に相当する。密度が156g/cm3(およその150倍)であり、このため太陽全体の2%ほどの体積の中に約50%の質量が詰まった状態になっている[24]。その環境は2500億気圧、温度が1500万Kに達するため物質は固体液体ではなく理想気体的な性質を持つ[11]、結合が比較的低い量子論的な縮退したプラズマ(電離気体)状態にある[25]

太陽が発する光のエネルギーは、この中心核においてつくられる[26]。ここでは熱核融合によって物質からエネルギーを取り出す熱核融合反応が起こり[11]水素ヘリウムに変換されている。1秒当たりでは約3.6 ×1038 個の陽子(水素原子核)がヘリウム原子核に変化しており、これによって1秒間に430万トンの質量が3.8 ×1026 Jのエネルギー [11]TNT火薬換算で9.1 ×1016 トンに相当する)に変換されている。このエネルギーの大部分はガンマ線に変わり、一部がニュートリノに変わる。ガンマ線は周囲のプラズマと衝突・吸収・屈折・再放射などの相互作用を起こしながら次第に「穏やかな」電磁波に変換され、数十万年かけて太陽表面にまで達し、宇宙空間に放出される[26]。一方、ニュートリノは物質との反応率が非常に低いため、太陽内部で物質と相互作用することなく宇宙空間に放出される[26][27][注 2]。それ故、太陽ニュートリノの観測は、現在の太陽中心部での熱核融合反応を知る有効な手段となっている。

太陽内部の放射層対流層
放射層は太陽半径の20% - 70%の所にあり、対流層は70% - 100%の所にある。

放射層

太陽半径の0.2倍から0.7倍まで、中心核を厚さ40万キロメートルで覆う[20]層では、放射輻射)による熱輸送を妨げる程には物質の不透明度が大きくない。したがって、この領域では対流は起こらず、輻射による熱輸送によって中心核で生じたエネルギーが外側へ運ばれている[20]。放射層をエネルギーが通過するには長い時間がかかり、近年の研究では約17万年が必要とも言われる[28]

対流層

0.7太陽半径から1太陽半径まで、厚さにして20万キロメートルの層[20]では、ベナール対流現象でエネルギーが外層へ伝わる[29]。ここでは微量イオンが原因となって不透明度が増し、輻射によるエネルギー輸送よりも効率が高い対流による熱伝導を行う[30]

光球

ダニエル・K・イノウエ太陽望遠鏡が撮影した太陽の表面(光球)の高解像度画像

光球とは、可視光を放出する、太陽の見かけの縁を形成する層である[9]。光球より下の層では密度が急上昇するため電磁波に対して不透明になり[22]、上の層では太陽光は散乱されることなく宇宙空間を直進するためこのように見える。厚さ約300キロメートル[22] - 600キロメートル[19]と薄い。

光球表面から放射される太陽光のスペクトルは約5,800K黒体放射に近く[22]、これに太陽大気の物質による約600本もの吸収線フラウンホーファー線)が多数乗っている[19]。比較的温度が低いため水素原子状態となり、これに電子が付着した負水素イオンになる。これが対流層からのエネルギーを吸収し、可視光を含む光の放射を行う[19]。光球の粒子密度は約1023 個/m3である。これは地球大気の海面上での密度の約1%に相当する。光球よりも上の部分を総称して太陽大気と呼ぶ。太陽大気は電波から可視光線、ガンマ線に至る様々な波長の電磁波で観測可能である。

光球の表面には、太陽大気ガスの対流運動がもたらす湧き上がる渦がつくる粒状斑[22]超粒状斑[31]や、しばしば黒点と呼ばれる暗い斑点状や白斑という明るい模様が観察できる。黒点部分の温度は約4,000K、中心部分は約3,200Kと相対的に低いために黒く見える。また、スペクトル解析からこの黒点部分には分子が観測された[32]

彩層

光球表面の上には厚さ約2,000キロメートルの密度が薄く温度が約7000 - 10000Kのプラズマ大気層があり[22]、この層から来る光には様々な輝線や吸収線が見られる。この領域を彩層と呼ぶ。皆既日食の始まりと終わりには紅色の彩層を見ることができる[22]。この彩層ではさまざまな活発な太陽活動が観察できる[9]

コロナ

皆既日食では、光球が完全に隠れたときに、真珠色に輝くコロナを肉眼でも見ることができる。
STEREOBの紫外線イメージングカメラのキャリブレーション中にキャプチャされた太陽の月の通過[33]
2007年1月12日に人工衛星「ひので」がコロナ放出の瞬間を撮影した貴重な画像。

彩層のさらに外側にはコロナと呼ばれる約200万Kのプラズマ大気層があり[22]、太陽半径の10倍以上の距離まで広がっている。彩層とコロナの間には遷移層と呼ばれる薄い層があり、これを境界に温度や密度が急激に変化する[34]

コロナからは太陽引力から逃れたプラズマの流れである[22]太陽風が出ており、太陽系と太陽圏 (heliosphere) を満たしている。コロナの太陽表面に近い低層部分では、粒子の密度は 1011 個/m3程度である。自由電子が光球の光を散乱しており、輝度は光球の1/100万と低いため普段は見えないが、皆既日食の際に白いリング状(またはアーチ状とも表現できる[23])に輝くコロナが観察できる[22]

かつてコロナのスペクトル線を分析した際に、既知の元素に見られないスペクトルが発見されたため、地上に存在しない元素「コロニウム」が提唱されたことがある[35]。しかしこれはコロナの温度がもっと低温と考えられていたためであり、このスペクトルは一般的な元素が高階電離状態で発するものであった。例えば最も強い波長530.3nmの緑線は13階電離(軌道電子を13個失った)鉄元素と判明した[22]

コロナの領域では、X線が観測されない領域が発生することがある。これは「コロナホール」と呼ばれ、磁力線が宇宙空間に向けて開いている箇所であり、ここはコロナガスが希薄で太陽風を発生させる原因のひとつである[36]


注釈

  1. ^ 2012年5月の金環日食の際の観測に基づく。金環日食直後の速報では、太陽半径として 696010±20 km としていたが、日本天文学会2012年秋季年会での報告値は太陽半径として 696019±10 km
  2. ^ 太陽内部では中心部にある核で生み出されたエネルギーが表面まで伝わるのに、数十万年から数百万年掛かると考えられている。プラズマ状態にある核では核融合反応によってニュートリノとガンマ線が生じている。ニュートリノは周囲の層を構成する物質と相互作用することはほとんどなく、そのまま宇宙空間に出て行く。核内部では生じたガンマ線が原子核に吸収され再び放射されることでジグザグに進むが、それは核の表面から放射層の最下層に達しても同様に原子核によって吸収と放射を繰り返しながらジグザグに進んで容易には外部へ伝わらない。核でエネルギーが生じてから放射層内部を進むのには数十万年から数百万年ほど掛かる。放射層表面に達したガンマ線は対流層の最底部を2百万度程度まで加熱する。対流層の表面は1万度程度であり、温度差によって対流しており、底部から表面まで約10日程度でエネルギーが運ばれる。対流層の外部の光球からは放射光や太陽風となって宇宙空間に出てゆく。
  3. ^ 地球史において太古の海洋の存在を示す地質学的な証拠と相容れないことから「暗い太陽のパラドックス」と呼ばれる。田近(1998)『地球進化論』315-320pによる アーカイブ 2016年6月30日 - ウェイバックマシン広島大学地球資源論研究室のまとめ、岐阜大学教育学部理科教育講座(地学)Web教材 高等学校理科総合B > 暗い初期太陽のパラドックス アーカイブ 2015年9月28日 - ウェイバックマシン、及びカール・セーガンらの原著、Sagan, C.; Mullen, G. (1972). “Earth and Mars: Evolution of Atmospheres and Surface Temperatures”. Science 177 (4043): 52–56. Bibcode1972Sci...177...52S. doi:10.1126/science.177.4043.52. PMID 17756316. オリジナルの2010年8月9日時点におけるアーカイブ。. http://www.sciencemag.org/cgi/content/abstract/177/4043/52?ck=nck 2015年9月27日閲覧。. ワシントン大学のサイト上の全文PDF アーカイブ 2015年11月23日 - ウェイバックマシン)を参照のこと。

出典

  1. ^ a b c d e 理科年表 2012, p. 96.
  2. ^ 理科年表 2012, p. 78.
  3. ^ a b c d e f g h i Williams, David R. (2016年12月16日). “Sun Fact Sheet” (英語). NASA. 2010年7月15日時点のオリジナルよりアーカイブ。2017年3月26日閲覧。
  4. ^ a b c d e f By the Numbers - Sun - Solar System Exploration: NASA Science”. Solar System Exploration: NASA Science. 2019年5月23日時点のオリジナルよりアーカイブ。2018年10月15日閲覧。
  5. ^ Elert, G.: “The Physics Factbook” (英語). 2010年11月25日時点のオリジナルよりアーカイブ。2010年10月16日閲覧。
  6. ^ a b 君が天文学者になる4日間 予習テキスト 第8章 知っておくべき事、知っておくと便利な事 (PDF)”. 国立天文台. pp. 55. 2012年5月25日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  7. ^ The Sun's Vital Statistics” (英語). Stanford Solar Center. 2011年1月5日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  8. ^ a b 尾崎 2010, pp. 9-10, 第2章 太陽と太陽系.
  9. ^ a b c d e ニュートン (別2009)、2章 太陽と地球、そして月、pp. 30–31 太陽とは何か
  10. ^ 君が天文学者になる4日間 予習テキスト 第2章 星の色と分類 (PDF)”. 国立天文台. p. 10. 2012年5月25日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  11. ^ a b c d e f 尾崎 2010, pp. 10-11, 第2章 太陽と太陽系、2.1太陽 2.1.1太陽の概観.
  12. ^ 最軽量の系外惑星を発見”. sorae.jp (2006年1月26日). 2015年9月24日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  13. ^ Sun: Facts & Figures”. NASA. 2008年1月2日時点のオリジナルよりアーカイブ。2018年6月17日閲覧。
  14. ^ 山崎 2007, pp. 102-103, 第4章 太陽系の広がりと宇宙の果て.
  15. ^ Table 1.1: IERS numerical standards 1 General definitions and numerical standards” (英語). 2012年6月24日閲覧。
  16. ^ a b c 山崎 2007, pp. 32-33, 第1章 太陽とは.
  17. ^ 君が天文学者になる4日間 予習テキスト 第8章 知っておくべき事、知っておくと便利な事 (PDF)” (日本語). 大学共同利用機関法人 自然科学研究機構 国立天文台. p. 52. 2012年5月25日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  18. ^ 第28回国際天文学連合総会 決議B2”. 2013年8月16日時点のオリジナルよりアーカイブ。2013年6月30日閲覧。
  19. ^ a b c d 山崎 2007, pp. 46-47, 第2章 太陽内部はエネルギーの宝庫.
  20. ^ a b c d e f g ニュートン (別2009)、2章 太陽と地球、そして月、pp. 32–33 太陽は超高温超高圧の核融合反応炉
  21. ^ a b 山崎 2007, pp. 36-37, 第2章 太陽内部はエネルギーの宝庫.
  22. ^ a b c d e f g h i j k l m n o p 尾崎 2010, pp. 11-16, 第2章 太陽と太陽系、2.1太陽 2.1.2太陽の表面およびその外層.
  23. ^ a b ニュートン (別2009)、2章 太陽と地球、そして月、pp. 34–36 海王星の先まで届く太陽の風
  24. ^ 太陽観測 2010, pp. 22-23, 第1章 太陽の基礎知識、1-4 太陽の構造.
  25. ^ 山崎 2007, pp. 38-39, 第2章 太陽内部はエネルギーの宝庫.
  26. ^ a b c 山崎 2007, pp. 42-43, 第2章 太陽内部はエネルギーの宝庫.
  27. ^ 山崎 2007, pp. 12-13.
  28. ^ 太陽観測 2009, pp. 22-23, 第1章 太陽の基礎知識、1-4 太陽の構造.
  29. ^ 山崎 2007, pp. 44-45, 第2章 太陽内部はエネルギーの宝庫.
  30. ^ 秋岡 2008, pp. 190-193, 第8章 太陽ってどんな星? 8-3太陽エネルギーの生成と輸送.
  31. ^ THE SUN DOES THE WAVE” (英語). NASA (2003年). 2010年3月11日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  32. ^ 広報普及室 (1997年). “天文ニュース(118) 太陽表面で水を検出” (日本語). 国立天文台. 2011年10月6日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  33. ^ Phillips, T. (2007年). “Stereo Eclipse”. Science@NASA. NASA. 2008年6月10日時点のオリジナルよりアーカイブ。2008年6月19日閲覧。
  34. ^ a b c d 浅井歩. “太陽観測による最近の磁気プラズマ研究の進展 (PDF)” (日本語). 社団法人日本流体力学会. 2011年10月6日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  35. ^ 黒河宏企. “7月22日の日食が世紀の日食と云われるわけ (PDF)” (日本語). 京都大学大学院理学研究科付属天文台 NPO法人花山星空ネットワーク. 2012年10月19日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  36. ^ a b c d 用語解説 (PDF)” (日本語). 文部科学省. 2013年1月28日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  37. ^ 尾崎 2010, pp. 20-21, 第2章太陽と太陽系、2.1太陽 2.1.4太陽のエネルギー源.
  38. ^ a b c d e f 尾崎 2010, pp. 21-33, 第2章太陽と太陽系、2.1太陽 2.1.5太陽ニュートリノの謎.
  39. ^ 2018年5月11日ニュース「太陽の自転が日本の雷に影響を与えている」”. SciencePortal (2018年5月11日). 2019年12月18日閲覧。
  40. ^ a b c d 町田忍. “太陽風 (Solar Wind)” (日本語). 京都大学大学院理学研究科 地球惑星科学専攻 太陽惑星系電磁気学講座. 2011年8月17日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  41. ^ a b 山崎 2007, pp. 50-51, 第2章 太陽内部はエネルギーの宝庫.
  42. ^ a b c d 太田善久 (2003年). “2003年5月12日 福田研輪講資料 太陽 (PDF)” (日本語). 電気通信大学情報理工学研究科情報・通信工学専攻田口研究室. 2005年5月5日時点のオリジナル[リンク切れ]よりアーカイブ。2010年10月19日閲覧。
  43. ^ a b c 尾崎 2010, pp. 16-20, 第2章太陽と太陽系、2.1太陽 2.1.3太陽の活動現象.
  44. ^ a b c 秋岡, pp. 197-201, 第8章 太陽ってどんな星?.
  45. ^ 3.太陽の活動現象 (PDF)” (日本語). 山口大学教育学部数理情報コース. 2010年10月19日閲覧。[リンク切れ]
  46. ^ a b c 南極豆事典 Lesson.4オーロラ 太陽風と磁気圏” (日本語). 国立極地研究所. 2011年5月31日時点のオリジナルよりアーカイブ。2010年10月19日閲覧。
  47. ^ 向井利典. “太陽風” (日本語). 東京大学地球惑星科学専攻宇宙惑星科学講座. 2014年3月18日時点のオリジナル[リンク切れ]よりアーカイブ。2010年10月19日閲覧。
  48. ^ 太陽風” (日本語). 名古屋大学太陽地球環境研究所. 2012年1月12日時点のオリジナル[リンク切れ]よりアーカイブ。2010年10月19日閲覧。
  49. ^ ヘリオポーズって何?” (日本語). 名古屋大学太陽地球環境研究所, りくべつ宇宙地球科学館, 豊川市ジオスペース館. 2012年1月14日時点のオリジナル[リンク切れ]よりアーカイブ。2010年10月19日閲覧。
  50. ^ 読売新聞2009年7月18日夕刊記事、参照部分日食…少しは体感できた?。他Dust particles dynamics in the solar ringAn explanation for time dependent variability of the solar dust ring
  51. ^ 西尾正則. “宇宙科学入門第7回資料 恒星の誕生と進化 (PDF)” (日本語). 鹿児島大学理学部. 2011年9月22日時点のオリジナル[リンク切れ]よりアーカイブ。2010年10月19日閲覧。
  52. ^ ニュートン (別2009)、6章 太陽系のなりたち、p134 私たちの体は星の死からつくりだされた?
  53. ^ Ramírez, I. et al. (2014). “Elemental Abundances of Solar Sibling Candidates”. The Astrophysical Journal 787 (2): 154. arXiv:1405.1723. Bibcode2014ApJ...787..154R. doi:10.1088/0004-637X/787/2/154. ISSN 0004-637X. 
  54. ^ Adibekyan, V. et al. (2018). “The AMBRE project: searching for the closest solar siblings”. Astronomy & Astrophysics 619: A130. arXiv:1810.01813v2. Bibcode2018A&A...619A.130A. doi:10.1051/0004-6361/201834285. ISSN 0004-6361. 
  55. ^ ニュートン (別2009)、6章 太陽系のなりたち、pp. 130–131 太陽系は現在の秩序ある姿となった
  56. ^ a b c d e f g h ニュートン (別2009)、7章 太陽系の最後、pp. 140–141 太陽は超巨大な赤い星に変化するという
  57. ^ a b c d 山崎 2007, pp. 148-149, 第7章 太陽と宇宙の未来.
  58. ^ a b ニュートン (別2009)、7章 太陽系の最後、pp. 142–143 太陽が膨らむと地球はどうなる?
  59. ^ 太陽観測 2009, pp. 20-21, 第1章 太陽の基礎知識.
  60. ^ ニュートン2016年4月号 p. 134
  61. ^ ニュートン (別2009)、7章 太陽系の最後、pp. 144–145 太陽の外側がはがれてなくなる?
  62. ^ ニュートン (別2009)、7章 太陽系の最後、pp. 146–147 太陽の最後の姿を想像してみると…
  63. ^ 山崎 2007, pp. 10-11, 第1章 太陽とは.
  64. ^ 編:大林太良伊藤清司、吉田敦彦、松村一男『世界神話事典』角川書店、2005年、297頁。ISBN 4-04-703375-8
  65. ^ a b 山崎 2007, pp. 14-15, 第1章 太陽とは.
  66. ^ 中村滋. “古代ギリシアの数学者たちの新しい姿 (PDF)” (日本語). 学習院大学. 2010年10月19日閲覧。[リンク切れ]
  67. ^ 山崎 2007, pp. 16-17, 第1章 太陽とは.
  68. ^ 山崎 2007, pp. 18-19, 第1章 太陽とは.
  69. ^ 村上陽一郎『宇宙像の変遷』講談社、1996年、第一刷、97–98。ISBN 4-06-159235-1
  70. ^ a b 山崎 2007, pp. 20-21, 第1章 太陽とは.
  71. ^ 尾崎 2010, p. 241, 第7章宇宙の中の人間.
  72. ^ Carrington, R. C. (1859). “Description of a Singular Appearance seen in the Sun on September 1, 1859”. Monthly Notices of the Royal Astronomical Society 20 (1): 13-15. Bibcode1859MNRAS..20...13C. doi:10.1093/mnras/20.1.13. ISSN 0035-8711. 
  73. ^ 山崎 2007, pp. 48-49, 第2章 太陽内部はエネルギーの宝庫.
  74. ^ a b アイザック・アシモフ、訳:玉虫文一、竹内敬人「第8章 周期表」『化学の歴史』ちくま学芸文庫、2010年、第一刷、172–173, 179。ISBN 978-4-480-09282-3
  75. ^ 太陽観測, pp. 118-120, 第7章 太陽観測の変遷、7-1-1 太陽観測の概観.
  76. ^ 日食網膜症 eclipse retinopathy、日光網膜症 solar retinopathy 聖隷浜松病院眼科 尾花 明”. 2012年5月28日時点のオリジナル[リンク切れ]よりアーカイブ。2013年6月30日閲覧。
  77. ^ 世界天文年2009 日食観察ガイド”. www.astronomy2009.jp. 2012年10月23日時点のオリジナルよりアーカイブ。2013年6月30日閲覧。
  78. ^ 財団法人 日本眼科学会 『日食観察で目を痛めないために』”. 2012年5月23日時点のオリジナル[リンク切れ]よりアーカイブ。2013年6月30日閲覧。
  79. ^ a b c 日本天文協議会、日本眼科学会、日本眼科医会、2012 「別紙 2012年5月21日(月曜日) 日食を安全に観察するために アーカイブ 2016年3月4日 - ウェイバックマシン」『平成24年5月21日の日食の観察における幼児・児童・生徒の安全確保に係る注意事項について(平成24年4月18日文部科学省研究開発局参事官(宇宙航空政策担当)付事務連絡) アーカイブ 2012年6月19日 - ウェイバックマシン』2012年2月
  80. ^ 株式会社ビクセン サポート情報”. 2013年7月27日時点のオリジナル[リンク切れ]よりアーカイブ。2013年6月30日閲覧。
  81. ^ a b 太陽観測 2009, pp. 118-120, 第7章 太陽観測の変遷、7-1-2 太陽望遠鏡の特徴.
  82. ^ a b 尾崎 2010, pp. 33-38, 第2章太陽と太陽系、2.1太陽 2.1.6日震学.






太陽と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「太陽」の関連用語

検索ランキング

   

英語⇒日本語
日本語⇒英語
   



太陽のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの太陽 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2021 GRAS Group, Inc.RSS