moving average modelとは? わかりやすく解説

Weblio 辞書 > 学問 > OR事典 > moving average modelの意味・解説 

移動平均モデル

読み方いどうへいきんもでる
【英】:moving average (MA) model

x_{t} \,\mbox{E}(x_{t})=0 \,弱定常過程とし, \varepsilon_{t} \,\mbox{E}(\varepsilon_{t})=0 \,, \mbox{V}(\varepsilon_{t})=\sigma^{2} \,, \mbox{E}(\varepsilon_{t}\varepsilon_{s})=0 \, (t \ne s) \,ホワイトノイズとする. x_{t} \,x_{t}=\varepsilon_{t}+\theta_{1}\varepsilon_{t-1}+\cdots+\theta_{q}\varepsilon_{t-q} \,表現できるとき, このモデル次数 q \, の移動平均モデルと呼び, MA(q) \, モデル略記する. 移動平均モデルは定常過程理論的性質調べ上で重要な役割を果たすモデルである.


移動平均モデル

(moving average model から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/19 22:05 UTC 版)

時系列分析における移動平均モデル: moving average modelMAモデル)は現在・過去のホワイトノイズ線形和に定数を加えて単変量の現在値を表現するモデルである[1]移動平均過程: moving average process)とも呼ばれる。

移動平均モデルは自己回帰移動平均モデル (ARMA) および自己回帰和分移動平均モデル (ARIMA) の特別なケースにあたる。また移動平均の一般化にあたる。

定義

次の移動平均モデル は以下のように定義される。

ここで は定数、 はパラメータ ()、 は時刻 におけるホワイトノイズである。すなわち各時刻でホワイトノイズがサンプリングされ、時刻 における出力は から までのホワイトノイズ重み付き和に定数を足しこんでモデル化される。

この式は後退オペレーター(英語版) B を用いることで以下のような同値である表現で書き表すことが出来る。

したがって、移動平均モデルは、現在および過去の(観測された)ホワイトノイズの誤差項またはランダムなショックに対して、現在の値を線形回帰するものである。各ポイントでのランダムショックは相互に独立しており、同じ分布(通常は、平均を0とし一定のスケールを持つ正規分布)から来ていると仮定する。

解釈

FIRフィルタ

出力 から定数 を引いた値を とし、ホワイトノイズ列を入力系列 、係数を にリネームすると次の式になる。

これはFIRフィルタである。すなわち は「ホワイトノイズ列を入力として 次のフィードフォワードからなる線形システム」と解釈される。

一般化移動平均

係数 の和が1であれば はホワイトノイズの加重移動平均に定数項を足したものとみなせる。これが「移動平均」モデルという名称の由来である。ただし移動平均モデルには係数に制約がないため移動平均でなく、むしろ移動平均の一般化といえる。

性質

影響範囲

移動平均モデルはFIRであるため、時刻 のホワイトノイズは有限の期間のみ ( ~ ) に影響を与える。これはIIRである自己回帰モデルと対照的である。

入出力関係

ランダムショックの役割はMAモデルとARモデルで異なる。

MAモデルではランダムショックは時系列の将来の値に直接伝播される。たとえば、 の方程式の右辺に直接現れる。

ARモデルではの方程式の右辺には現れないがの方程式の右辺に現れ、の方程式の右辺に現れるため、に間接的な効果のみを与える 。

パラメーターの計算

MAモデルの係数の推定は、ラグ付きの誤差項が観測できないためARモデルの場合よりも複雑である。そのため線形最小二乗法の代わりに、繰り返し計算による非線形カーブフィッティングが必要となる。

MA(q)プロセスの自己相関関数(ACF)は、ラグq + 1以上で0となる。したがって、サンプルの自己相関関数を調べ、それを超えるすべてのラグでゼロと有意に異なるようになるラグを確認することで、推定に適した最大ラグを決定する。

ACFと偏自己相関関数(PACF)から、MAモデルがより適切なモデルの選択であると示唆される場合もあり、ARとMAの両方の項を同じモデルで使用するよう示唆されることもある。

脚注

[脚注の使い方]
  1. ^ "MA(q)過程は現在とq期間の過去のホワイトノイズの線形和に定数を加えたものである." 沖本. (2010). 経済・ファイナンスデータの計量時系列分析. 朝倉書店.

関連項目

参考文献

  • Enders, Walter (2004). “Stationary Time-Series Models”. Applied Econometric Time Series (Second ed.). New York: Wiley. pp. 48–107. ISBN 0-471-45173-8 

外部リンク


「moving average model」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「moving average model」の関連用語

moving average modelのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



moving average modelのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
日本オペレーションズ・リサーチ学会日本オペレーションズ・リサーチ学会
Copyright (C) 2025 (社)日本オペレーションズ・リサーチ学会 All rights reserved.
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの移動平均モデル (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS