擬凸性とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 擬凸性の意味・解説 

擬凸性

(Pseudoconvexity から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/09/03 06:25 UTC 版)

数学多変数複素函数の理論において、擬凸集合(ぎとつしゅうごう、: pseudoconvex set)は n 次元複素空間 Cn 内のある特殊なタイプの開集合である。擬凸集合が重要となるのは、それらが正則領域の分類に有用となるからである。

を領域、すなわち、連結部分集合とする。G が擬凸(あるいは、ハルトークス擬凸)であるとは、すべての実数 x に対して

G相対コンパクトな部分集合となるような、G 上のある連続多重劣調和函数 φ が存在することを言う。言い換えると、G が連続かつ多重劣調和なエグゾースチョン函数 (exhaustion function) を持つとき、その領域は擬凸である。

GC2(二階連続的微分可能)級の境界を持つとき、この概念はより簡単に扱えるレヴィ擬凸性となる。より具体的に、C2 級の境界を持つ G には定義函数が存在することが示される。すなわち、G = {ρ < 0} および G = {ρ = 0} を満たすような C2 級の ρ: CnR の存在が示される。今、G が擬凸であるための必要十分条件は、すべての p ∈ ∂G と、p での複素接空間内の w, すなわち

を満たすような w に対して、

が成立することである。

G の境界が C2 級でないなら、次の近似的な結果が有用となる。

命題1 G が擬凸であるなら、境界が C 級(滑らか)で、G 内で相対コンパクトであるような有界強レヴィ擬凸領域 GkG

を満たすものが存在する。

この命題がなぜ成立するかと言うと、定義におけるような φ に対して、実際に C エグゾースチョン函数 (exhaustion function) を得ることが出来るからである。

n = 1 の場合

複素一次元において、すべての開領域は擬凸である。したがって擬凸性の概念は、より高次元の場合においてより有意義となる。

関連項目

参考文献




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「擬凸性」の関連用語

擬凸性のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



擬凸性のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの擬凸性 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS