解析教程 (コーシーの著書)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/01/12 04:07 UTC 版)
コーシーの著書『Cours d'Analyse de l’École Royale Polytechnique; I.re Partie. Analyse algébrique』(『フランス王立工科大学における解析教程 第一部 代数的解析学』)は、1821年に著わされた無限小計算に基づく初等解析学において多大な影響を及ぼした教科書である。しばしば短く、Cours d'Analyse, 『解析教程』と呼ばれる。本項記述は英語訳本 (Bradley & Sandifer 2010) に基づく[注釈 1]。
序言
導入の第1頁でコーシーは「函数の連続性を述べるにおいて、無限小量の原理的性質を扱うことはできなかった、それは無限小微分積分学を基礎を与える性質である」と書いている。訳者は脚注で「コーシーがここで極限にも言及しなかったことは興味深い」とコメントしている。
コーシーは「方法論としては、幾何学から要求される厳密性はすべて賄うよう努めた。ゆえに、代数の一般性からくる論法に頼る必要はない」と続けている。
序論
第6頁でコーシーは、まず変量に関して議論を行い、極限の概念を「ある同一の変化量に次々に割り当てられる値がある一定の値に限りなく近づき, 最後にはどれほどでも望むだけわずかな違いしか見られないようなとき, この値は他のすべての値の極限 (limite) と呼ばれる」[1]との言葉で導入した。
第7頁でコーシーは、無限小を「同一の変化量の連続する数値[注釈 2]が, 与えられたどのような量よりも小さくなるように, 際限なく減少するとき, この変化量は無限小 (infiniment petit) あるいは無限小量 (quantite infiniment petite) と名づけられる. この種の変化量は 0 を極限にもっ」[1]と加えている。
極限の記法

- 解析教程_(コーシーの著書)のページへのリンク