虚数変換
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/09/19 10:13 UTC 版)
上昇ランデン変換と下降ランデン変換は虚数変換により交替する。 sn ( i u , 1 − k 2 ) = i sc ( u , k ) = i sn ( u , k ) cn ( u , k ) {\displaystyle \operatorname {sn} \left(iu,{\sqrt {1-k^{2}}}\right)=i\operatorname {sc} \left(u,k\right)={\frac {i\operatorname {sn} \left(u,k\right)}{\operatorname {cn} \left(u,k\right)}}} 上昇ランデン変換により i sn ( u , k ) cn ( u , k ) = 2 i 1 + k sn ( 1 + k 2 u , 2 k 1 + k ) cn ( 1 + k 2 u , 2 k 1 + k ) dn ( 1 + k 2 u , 2 k 1 + k ) 2 1 + k dn 2 ( 1 + k 2 u , 2 k 1 + k ) − 1 − k 1 + k 4 k ( 1 + k ) 2 dn ( 1 + k 2 u , 2 k 1 + k ) = 4 k i ( 1 + k ) 2 sn ( 1 + k 2 u , 2 k 1 + k ) cn ( 1 + k 2 u , 2 k 1 + k ) dn 2 ( 1 + k 2 u , 2 k 1 + k ) − 1 − k 1 + k {\displaystyle {\begin{aligned}{\frac {i\operatorname {sn} \left(u,k\right)}{\operatorname {cn} \left(u,k\right)}}&={\frac {\frac {{\tfrac {2i}{1+k}}\operatorname {sn} \left({\tfrac {1+k}{2}}u,{\tfrac {2{\sqrt {k}}}{1+k}}\right)\operatorname {cn} \left({\tfrac {1+k}{2}}u,{\tfrac {2{\sqrt {k}}}{1+k}}\right)}{\operatorname {dn} \left({\tfrac {1+k}{2}}u,{\tfrac {2{\sqrt {k}}}{1+k}}\right)}}{\frac {{\tfrac {2}{1+k}}\operatorname {dn} ^{2}\left({\tfrac {1+k}{2}}u,{\tfrac {2{\sqrt {k}}}{1+k}}\right)-{\tfrac {1-k}{1+k}}}{{\tfrac {4k}{(1+k)^{2}}}\operatorname {dn} \left({\tfrac {1+k}{2}}u,{\tfrac {2{\sqrt {k}}}{1+k}}\right)}}}\\&={\frac {{\tfrac {4ki}{(1+k)^{2}}}\operatorname {sn} \left({\tfrac {1+k}{2}}u,{\tfrac {2{\sqrt {k}}}{1+k}}\right)\operatorname {cn} \left({\tfrac {1+k}{2}}u,{\tfrac {2{\sqrt {k}}}{1+k}}\right)}{\operatorname {dn} ^{2}\left({\tfrac {1+k}{2}}u,{\tfrac {2{\sqrt {k}}}{1+k}}\right)-{\tfrac {1-k}{1+k}}}}\\\end{aligned}}} 虚数変換により sn ( i u , 1 − k 2 ) = 4 k ( 1 + k ) 2 sc ( 1 + k 2 i u , 1 − k 1 + k ) nc ( 1 + k 2 i u , 1 − k 1 + k ) dc 2 ( 1 + k 2 i u , 1 − k 1 + k ) − 1 − k 1 + k = 4 k ( 1 + k ) 2 sn ( 1 + k 2 i u , 1 − k 1 + k ) dn 2 ( 1 + k 2 i u , 1 − k 1 + k ) − 1 − k 1 + k cn 2 ( 1 + k 2 i u , 1 − k 1 + k ) = 4 k ( 1 + k ) 2 sn ( 1 + k 2 i u , 1 − k 1 + k ) 2 k 1 + k + 2 k ( 1 − k ) ( 1 + k ) 2 sn 2 ( 1 + k 2 i u , 1 − k 1 + k ) = 2 1 + k sn ( 1 + k 2 i u , 1 − k 1 + k ) 1 + 1 − k 1 + k sn 2 ( 1 + k 2 i u , 1 − k 1 + k ) {\displaystyle {\begin{aligned}\operatorname {sn} \left(iu,{\sqrt {1-k^{2}}}\right)&={\frac {{\tfrac {4k}{(1+k)^{2}}}\operatorname {sc} \left({\tfrac {1+k}{2}}iu,{\tfrac {1-k}{1+k}}\right)\operatorname {nc} \left({\tfrac {1+k}{2}}iu,{\tfrac {1-k}{1+k}}\right)}{\operatorname {dc} ^{2}\left({\tfrac {1+k}{2}}iu,{\tfrac {1-k}{1+k}}\right)-{\tfrac {1-k}{1+k}}}}\\&={\frac {{\tfrac {4k}{(1+k)^{2}}}\operatorname {sn} \left({\tfrac {1+k}{2}}iu,{\tfrac {1-k}{1+k}}\right)}{\operatorname {dn} ^{2}\left({\tfrac {1+k}{2}}iu,{\tfrac {1-k}{1+k}}\right)-{\tfrac {1-k}{1+k}}\operatorname {cn} ^{2}\left({\tfrac {1+k}{2}}iu,{\tfrac {1-k}{1+k}}\right)}}\\&={\frac {{\tfrac {4k}{(1+k)^{2}}}\operatorname {sn} \left({\tfrac {1+k}{2}}iu,{\tfrac {1-k}{1+k}}\right)}{{\tfrac {2k}{1+k}}+{\tfrac {2k(1-k)}{(1+k)^{2}}}\operatorname {sn} ^{2}\left({\tfrac {1+k}{2}}iu,{\tfrac {1-k}{1+k}}\right)}}\\&={\frac {{\tfrac {2}{1+k}}\operatorname {sn} \left({\tfrac {1+k}{2}}iu,{\tfrac {1-k}{1+k}}\right)}{1+{\tfrac {1-k}{1+k}}\operatorname {sn} ^{2}\left({\tfrac {1+k}{2}}iu,{\tfrac {1-k}{1+k}}\right)}}\\\end{aligned}}} i u {\displaystyle iu} を u {\displaystyle u} と書き、 1 − k 2 {\displaystyle {\sqrt {1-k^{2}}}} を k {\displaystyle k} と書けば sn ( u , k ) = 2 1 + 1 − k 2 sn ( 1 + 1 − k 2 2 u , 1 − 1 − k 2 1 + 1 − k 2 ) 1 + 1 − 1 − k 2 1 + 1 − k 2 sn 2 ( 1 + 1 − k 2 2 u , 1 − 1 − k 2 1 + 1 − k 2 ) {\displaystyle {\begin{aligned}\operatorname {sn} \left(u,k\right)&={\frac {{\tfrac {2}{1+{\sqrt {1-k^{2}}}}}\operatorname {sn} \left({\tfrac {1+{\sqrt {1-k^{2}}}}{2}}u,{\tfrac {1-{\sqrt {1-k^{2}}}}{1+{\sqrt {1-k^{2}}}}}\right)}{1+{\tfrac {1-{\sqrt {1-k^{2}}}}{1+{\sqrt {1-k^{2}}}}}\operatorname {sn} ^{2}\left({\tfrac {1+{\sqrt {1-k^{2}}}}{2}}u,{\tfrac {1-{\sqrt {1-k^{2}}}}{1+{\sqrt {1-k^{2}}}}}\right)}}\end{aligned}}} となるが、これは下降ランデン変換である。
※この「虚数変換」の解説は、「ランデン変換」の解説の一部です。
「虚数変換」を含む「ランデン変換」の記事については、「ランデン変換」の概要を参照ください。
- 虚数変換のページへのリンク