例 III: 三角関数の積分
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/06/30 22:43 UTC 版)
「複素線積分」の記事における「例 III: 三角関数の積分」の解説
三角関数を含む積分に対して、ある種の代入を行って複素有理関数へと変換することで積分値が算出できる場合がある。 例として次のような積分を考える。 ∫ − π π 1 1 + 3 ( cos t ) 2 d t . {\displaystyle \int _{-\pi }^{\pi }{1 \over 1+3(\cos {t})^{2}}\,dt.} z = eit と変数変換する。 cos t = 1 2 ( e i t + e − i t ) = 1 2 ( z + 1 z ) {\displaystyle \cos t={1 \over 2}\left(e^{it}+e^{-it}\right)={1 \over 2}\left(z+{1 \over z}\right)} および d z d t = i z , d t = d z i z {\displaystyle {dz \over dt}=iz,\ dt={dz \over iz}} であることを思い出すと、代入により積分は次のように書き直せる。C は単位円周。 ∮ C 1 1 + 3 ( 1 2 ( z + 1 z ) ) 2 d z i z = ∮ C 1 1 + 3 4 ( z + 1 z ) 2 1 i z d z = ∮ C − i z + 3 4 z ( z + 1 z ) 2 d z = − i ∮ C 1 z + 3 4 z ( z 2 + 2 + 1 z 2 ) d z = − i ∮ C 1 z + 3 4 ( z 3 + 2 z + 1 z ) d z = − i ∮ C 1 3 4 z 3 + 5 2 z + 3 4 z d z = − i ∮ C 4 3 z 3 + 10 z + 3 z d z = − 4 i ∮ C 1 3 z 3 + 10 z + 3 z d z = − 4 i ∮ C z 3 z 4 + 10 z 2 + 3 d z = − 4 i ∮ C z 3 ( z + 3 i ) ( z − 3 i ) ( z + i 3 ) ( z − i 3 ) d z = − 4 3 i ∮ C z ( z + 3 i ) ( z − 3 i ) ( z + i 3 ) ( z − i 3 ) d z . {\displaystyle {\begin{aligned}\oint _{C}{1 \over 1+3({1 \over 2}(z+{1 \over z}))^{2}}\,{dz \over iz}&=\oint _{C}{1 \over 1+{3 \over 4}(z+{1 \over z})^{2}}{1 \over iz}\,dz\\&=\oint _{C}{-i \over z+{3 \over 4}z(z+{1 \over z})^{2}}\,dz\\&=-i\oint _{C}{1 \over z+{3 \over 4}z(z^{2}+2+{1 \over z^{2}})}\,dz\\&=-i\oint _{C}{1 \over z+{3 \over 4}(z^{3}+2z+{1 \over z})}\,dz\\&=-i\oint _{C}{1 \over {3 \over 4}z^{3}+{5 \over 2}z+{3 \over 4z}}\,dz\\&=-i\oint _{C}{4 \over 3z^{3}+10z+{3 \over z}}\,dz\\&=-4i\oint _{C}{1 \over 3z^{3}+10z+{3 \over z}}\,dz\\&=-4i\oint _{C}{z \over 3z^{4}+10z^{2}+3}\,dz\\&=-4i\oint _{C}{z \over 3(z+{\sqrt {3}}i)\left(z-{\sqrt {3}}i\right)\left(z+{\frac {i}{\sqrt {3}}}\right)\left(z-{\frac {i}{\sqrt {3}}}\right)}\,dz\\&=-{4 \over 3}i\oint _{C}{z \over (z+{\sqrt {3}}i)(z-{\sqrt {3}}i)\left(z+{\frac {i}{\sqrt {3}}}\right)\left(z-{\frac {i}{\sqrt {3}}}\right)}\,dz.\end{aligned}}} 考える必要がある特異点は 3−1/2i, −3−1/2i の2つである。 C1 を 3−1/2i を囲む小さな円周、C2 を −3−1/2i を囲む小さな円周として、以下のように計算できる。 − 4 3 i [ ∮ C 1 z ( z + 3 i ) ( z − 3 i ) ( z + i 3 ) z − i 3 d z + ∮ C 2 z ( z + 3 i ) ( z − 3 i ) ( z − i 3 ) z + i 3 d z ] = − 4 3 i [ 2 π i ( z ( z + 3 i ) ( z − 3 i ) ( z + i 3 ) ) | z = i 3 + 2 π i ( z ( z + 3 i ) ( z − 3 i ) ( z − i 3 ) ) | z = − i 3 ] = 8 π 3 [ i 3 ( i 3 + 3 i ) ( i 3 − 3 i ) ( i 3 + i 3 ) + − i 3 ( − i 3 + 3 i ) ( − i 3 − 3 i ) ( − i 3 − i 3 ) ] = 8 π 3 [ i 3 ( 4 3 i ) ( − 2 i 3 ) ( 2 3 i ) + − i 3 ( 2 3 i ) ( − 4 3 i ) ( − 2 3 i ) ] = 8 π 3 [ i 3 i ( 4 3 ) ( 2 3 ) ( 2 3 ) + − i 3 − i ( 2 3 ) ( 4 3 ) ( 2 3 ) ] = 8 π 3 [ 1 3 ( 4 3 ) ( 2 3 ) ( 2 3 ) + 1 3 ( 2 3 ) ( 4 3 ) ( 2 3 ) ] = 8 π 3 [ 1 3 16 3 3 + 1 3 16 3 3 ] = 8 π 3 [ 3 16 + 3 16 ] = π . {\displaystyle {\begin{aligned}&-{\frac {4}{3}}i\left[\oint _{C_{1}}{\frac {\frac {z}{(z+{\sqrt {3}}i)(z-{\sqrt {3}}i)\left(z+{\frac {i}{\sqrt {3}}}\right)}}{z-{\frac {i}{\sqrt {3}}}}}\,dz+\oint _{C_{2}}{\frac {\frac {z}{(z+{\sqrt {3}}i)(z-{\sqrt {3}}i)\left(z-{\frac {i}{\sqrt {3}}}\right)}}{z+{\frac {i}{\sqrt {3}}}}}\,dz\right]\\&=-{\frac {4}{3}}i\left[2\pi i\left({\frac {z}{(z+{\sqrt {3}}i)(z-{\sqrt {3}}i)(z+{\frac {i}{\sqrt {3}}})}}\right){\Bigg |}_{z={\frac {i}{\sqrt {3}}}}+2\pi i\left({\frac {z}{(z+{\sqrt {3}}i)(z-{\sqrt {3}}i)(z-{\frac {i}{\sqrt {3}}})}}\right){\Bigg |}_{z=-{\frac {i}{\sqrt {3}}}}\right]\\&={\frac {8\pi }{3}}\left[{\frac {\frac {i}{\sqrt {3}}}{({\frac {i}{\sqrt {3}}}+{\sqrt {3}}i)({\frac {i}{\sqrt {3}}}-{\sqrt {3}}i)({\frac {i}{\sqrt {3}}}+{\frac {i}{\sqrt {3}}})}}+{\frac {-{\frac {i}{\sqrt {3}}}}{(-{\frac {i}{\sqrt {3}}}+{\sqrt {3}}i)(-{\frac {i}{\sqrt {3}}}-{\sqrt {3}}i)(-{\frac {i}{\sqrt {3}}}-{\frac {i}{\sqrt {3}}})}}\right]\\&={\frac {8\pi }{3}}\left[{\frac {\frac {i}{\sqrt {3}}}{({\frac {4}{\sqrt {3}}}i)(-{\frac {2}{i{\sqrt {3}}}})({\frac {2}{{\sqrt {3}}i}})}}+{\frac {-{\frac {i}{\sqrt {3}}}}{({\frac {2}{\sqrt {3}}}i)(-{\frac {4}{\sqrt {3}}}i)(-{\frac {2}{\sqrt {3}}}i)}}\right]\\&={\frac {8\pi }{3}}\left[{\frac {\frac {i}{\sqrt {3}}}{i({\frac {4}{\sqrt {3}}})({\frac {2}{\sqrt {3}}})({\frac {2}{\sqrt {3}}})}}+{\frac {-{\frac {i}{\sqrt {3}}}}{-i({\frac {2}{\sqrt {3}}})({\frac {4}{\sqrt {3}}})({\frac {2}{\sqrt {3}}})}}\right]\\&={\frac {8\pi }{3}}\left[{\frac {\frac {1}{\sqrt {3}}}{({\frac {4}{\sqrt {3}}})({\frac {2}{\sqrt {3}}})({\frac {2}{\sqrt {3}}})}}+{\frac {\frac {1}{\sqrt {3}}}{({\frac {2}{\sqrt {3}}})({\frac {4}{\sqrt {3}}})({\frac {2}{\sqrt {3}}})}}\right]\\&={\frac {8\pi }{3}}\left[{\frac {\frac {1}{\sqrt {3}}}{\frac {16}{3{\sqrt {3}}}}}+{\frac {\frac {1}{\sqrt {3}}}{\frac {16}{3{\sqrt {3}}}}}\right]\\&={\frac {8\pi }{3}}\left[{\frac {3}{16}}+{\frac {3}{16}}\right]=\pi .\end{aligned}}}
※この「例 III: 三角関数の積分」の解説は、「複素線積分」の解説の一部です。
「例 III: 三角関数の積分」を含む「複素線積分」の記事については、「複素線積分」の概要を参照ください。
- 例 III: 三角関数の積分のページへのリンク