レイリー・リッツ法
(リッツベクトル から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/10/13 14:04 UTC 版)
![]() |
この項目「レイリー・リッツ法」は翻訳されたばかりのものです。不自然あるいは曖昧な表現などが含まれる可能性があり、このままでは読みづらいかもしれません。(原文:en: Rayleigh–Ritz method)
修正、加筆に協力し、現在の表現をより自然な表現にして下さる方を求めています。ノートページや履歴も参照してください。(2023年9月) |
レイリー・リッツ法(レイリー・リッツほう、英: Rayleigh–Ritz method)は、固有値問題に対する数値的近似解法の一つ。レイリー卿とヴァルター・リッツに名をちなむ。物理学上の境界値問題の解法として考案された。
固有値と固有ベクトルの近似をともなう全ての問題に応用でき、分野によってしばしば別名で呼ばれる。量子力学では、系を構成する粒子はハミルトニアンを用いて記述されるが、リッツ法では試行波動関数を用いて最低エネルギー固有値に対応する固有関数を近似する。有限要素法の文脈では、数学的に等価なアルゴリズムが一般にリッツ・ガラーキン法と呼ばれる。機械工学および構造工学では固有振動モードおよび共鳴周波数を近似する手法としてレイリー・リッツ法およびリッツ法という用語が用いられることが多い。
名称
本手法は1908年から1909年にかけてヴァルター・リッツが発表したもので、リッツ法と呼ぶべきであるという主張もある[1][2]。A. W. Leissa[1]によれば、レイリー卿は1911年にリッツの業績を顕彰する論文を書いたが、彼自身が書籍他の刊行物において本手法をすでに何度も用いていたと述べている。後に異論も出たもののこの主張にくわえ、射影に単一ベクトルを用いる自明な場合、本手法はレイリー商の計算に帰着するという事実もあり、異論もあるもののレイリー・リッツ法という名称が現在まで用いられている。S.Ilanko[2]はリヒャルト・クーラントを引いて、レイリー卿とヴァルター・リッツがそれぞれ独立に、偏微分方程式の境界値問題と変分問題の等価性を活用し、有限のパラメータを決定すればよい極値問題で変分法を置き換えるというアイデアを独自に考案したとする。詳細については、リッツ法の項を参照されたい。皮肉なことに、後にこの手法はより単純でより一般的な正射影を用いるよう改良され、ボリス・ガラーキンに名を因んでガラーキン法もしくはリッツ・ガラーキン法と呼ばれる。
行列の固有値問題への適用
- レイリー・リッツ法のページへのリンク