ウェアリングの問題
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/09/19 07:35 UTC 版)
ウェアリングの問題 (英: Waring's problem) は、全ての自然数 k ≥ 2 に対して、「全ての自然数は s 個の非負の k 乗数の和で表される」という性質を満たす整数 s が存在するかという問題である。
この問題は1770年にエドワード・ウェアリングによって提示され、1909年にダフィット・ヒルベルトによって肯定的に解決された[1]。その後、各 k に対して整数 s の最小値 g(k) を与える公式が発見されている。現在、単にウェアリングの問題と言えば、「全ての自然数は s 個の非負の k 乗数の和で表される」を満足する s の最小値を評価・決定する問題を指すことが多い(例えば、全ての自然数は、4個の平方数で表されるか、あるいは、9個の立方数で表されるか、19個の4乗数で表されるか、など)。ウェアリングの問題は、MSC2020において、11P05 "Waring’s problem and variants"(ウェアリングの問題とその変種)として項目立てられている[2]。
ラグランジュの四平方定理との関係
ウェアリングが問題を提示するはるか前に、ディオファントスは全ての自然数は非負の平方数の四つの和として表すことができるかと問うた。1621年にクロード・バシェ(Claude Gaspard Bachet de Méziriac)によるディオファントスの翻訳が出版されると、この問題はバシェの予想として知られるようになり、ウェアリングの予想の提示と同じ1770年にルイ・ラグランジュによって四平方定理として解かれた。ウェアリングは、全ての自然数が立方数の和として、また4乗数の和として表現できるか等々と、この問題を一般化して考えた。そして、全ての自然数は特定のべき指数での整数のべき乗の和として表すことができるのではないか、さらにこのような方法で、全ての自然数を特定のべき指数での整数のべき乗の和として表すことがいつでもできる(和の対象となる整数べき乗の)個数が存在するのではないかと予想した[注釈 1]。
g(k)の値
全ての自然数を自然数の k 乗べきの s 個の和で表せるとしたとき、最小の s の値を(全ての k に対して)g(k) で表すこととする。g(1) = 1 であることに注意する。簡単な計算により、7 は 4 個の平方数、23 は 9 個の立方数、79 は 19 個の 4 乗数で表すことがわかるので、これらの例から g(2) ≥ 4, g(3) ≥ 9, g(4) ≥ 19 であることがわかる。ウェアリングはこれらの値が実際は全ての自然数に対して表すことが可能ではないかと予想した。
1770年のラグランジュの四平方定理は、全ての自然数は多くとも 4 個の平方数の和で表現できると主張しており、前述の通り 3 個の平方数では表現できないため、この定理から g(2) = 4 であることがわかる。ラグランジュの四平方定理は、ディオファントスの『算術(Arithmetica)』のクロード・バシェによる1621年版の中で予想されている。フェルマーは証明したと主張したが、出版はされていない。[3]
年月を経て、段々と複雑で高度化した証明法が使われるようになり、様々な境界が判明してきた。例えば、リウヴィルは g(4) は大きくとも 53 であることを示した。ハーディとリトルウッドは、十分に大きな自然数に対して、多くとも 19 個の 4 乗数の和で表されることを示した。
g(3) = 9 であることは1909年から1912年にかけて、アーサー・ウィーフェリッチ(Arthur Wieferich)[4] とオーブリー・ケンプナー[5]により示された。1986年には、g(4) = 19 がラマチャンドラン・ブラスブラマニアン(R. Balasubramanian)、ドレス(F. Dress)とジャン・マーク・デショワラー(J.-M. Deshouillers)により示された[6][7]。1964年には、g(5) = 37 が陳景潤により、g(6) = 73 は1940年にスバッヤ・ピライ(Pillai)により示された[8]。
[x] と {x} でそれぞれ x の整数部分と分数部分を表すとする。2k[(3/2)k]-1<3k であるので、2k と 1k だけが、 2k[(3/2)k]-1 を表すことに使うことができ、もっとも簡潔な表現(和を取る、べき乗整数の個数が最小となる表現)は [(3/2)k]-1 個の 2k と 2k-1 個の1k の和であるから、これにより g(k) は 2k + [(3/2)k] − 2 以上である。有名なレオンハルト・オイラーの息子であるJ. A. オイラーは、1772年頃に、実際、g(k) = 2k + [(3/2)k] − 2 であることを予想した[9]。後日、レオナード・ディクソン、ピライ、R. ルブグンダイ(R. K. Rubugunday)、イヴァン・ニーベン[10] や他の数学者らにより、以下のことが示された。