フレアーホモロジー 3次元多様体のフレアーホモロジー

Weblio 辞書 > 辞書・百科事典 > 百科事典 > フレアーホモロジーの解説 > 3次元多様体のフレアーホモロジー 

フレアーホモロジー

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/11/28 08:33 UTC 版)

3次元多様体のフレアーホモロジー

閉じた3次元多様体英語版についての複数のフレアーホモロジーの間には、同値関係があると予想されている。3つのタイプのホモロジー群が互いに同値であり、完全三角性を形成すると予想されている。3次元多様体の結び目は、それぞれの理論のチェイン複体のフィルトレーションを引き起こし、チェインのホモトピータイプが結び目不変量となる。(それらのホモロジーは、組み合わせ的に定義されたコバノフホモロジーと同じような公式の性質を満たす。)

これらのホモロジーは、4次元シンプレクティック多様体のタウベスによるグロモフ不変量と同じように、4次元多様体ドナルドソン不変量やサイバーグ不変量と密接に関連している。3次元ホモロジーをこれらの理論に対応させる微分(写像)は、3次元多様体の交叉 R 上の微分方程式であるヤン・ミルズ理論サイバーグ・ウィッテン理論英語版[2]コーシー-リーマン方程式[3]、をそれぞれの解を考えることであることが分かる。3次元多様体のフレアーホモロジーも境界を持つ 4次元多様体の相対的な不変量の対象となるべきで、3次元多様体を境界として張り合わせることで得られる閉 4次元多様体の不変量と、張り合わせる構成により関連付けられる。(これは位相的場の理論の概念と密接に関連する。) ヒーガードフレアーホモロジーに対し、3次元多様体のホモロジーが最初に定義され、後日、閉 4次元多様体の不変量がこの方法で定義された。

3次元多様体のホモロジーの境界を持った 3次元多様体への拡張も存在していて:縫い合わせフレアーホモロジー(Juhasz 2008) や境界を持つフレアーホモロジー(Lipshitz, Ozsvath & Thurston 2008)がある. これらは 2つの境界を持つ3次元多様体の境界に沿った併合として記述される 3次元多様体のフレアーホモロジーの張り合わせ公式により、閉3次元多様体の不変量に関連していると期待されている。

3次元多様体英語版がサイバーグ-ウィッテンの場合に、クロンハイマー(Kronheimer)とムロフカ(Mrowka)の始めた接触構造英語版を持っているとき、3次元多様体のフレアーホモロジーは別なホモロジーの要素を持つことになる。(一つの接触構造を選択すると、埋め込まれた接触ホモロジー(embedded contact homology)[4](ECHと省略する)が定義される。埋め込まれた接触ホモロジーは、Hutchings (2009)に解説されているので、参照)

これらの理論はすべて、もともと相対的次数を持っていることになり;これらは、SWFについては(2-平面の場のホモトピークラスを割り当てることで)絶対的次数へ持ち上げられ、また ECH については SWF-ECH の同型を使い持ち上げる。

インスタントンフレアーホモロジー

インスタントンフレアーホモロジーは、フレアー自身により導入され、ドナルドソン理論と結ばれた 3次元多様体の不変量である。これは、3次元多様体のSU(2)-主バンドル接続の空間上のチャーン・サイモンズ汎函数を使って得られる。チャーン-サイモンズ汎函数の臨界点では、接続が平坦接続となり、力線がインスタントン英語版(Instanton)、つまり実直線と 3次元多様体の交点の上の反自己双対接続となる。フレアーホモロジーのオイラー標数キャッソン不変量に一致するので、インスタントンフレアーホモロジーはキャッソン不変量の一般化とも考えられる。

フレアーがフレアーホモロジーを導入すると、すぐにドナルドソンはコボルディズム(Cobordism)がこれらの写像を導くということを示した。これが位相的場の理論として知られるようになった構造の最初の例であった。

サイバーグ-ウィッテンフレアーホモロジー

サイバーグ-ウィッテンフレアーホモロジー、あるいは、モノポールフレアーホモロジーは、spinc構造をもつ 3次元多様体のホモロジー論で、3次元多様体の U(1) 接続を持つサイバーグ-ウィッテン-ディラック方程式のモースホモロジー論とみなすことができる。付帯する勾配の力線の方程式は、実直線と交わる 2次元多様体上のサイバーグ・ウィッテン方程式に対応する。同じことであるが、鎖複体の生成子は、実直線と 3次元多様体の積上の(モノポールと呼ばれる)サイバーグ・ウィッテン方程式の変換不変な解であり、微分はこの 3次元多様体と実直線の積上のサイバーグ・ウィッテン方程式の解の数を数える(解は正と負の無限遠点で不変解へ漸近する)。

サイバーグ-ウィッテンフレアーホモロジーのひとつのバージョンは、厳密にピーター・クロンハイマー英語版トーマス・ムロフカ英語版の単行本 Monopoles and Three-manifolds により厳密に構成された。そこではモノポールフレアーホモロジーであることが分かる。クリフォード・タウベス英語版は、これが埋め込み接触ホモロジーと同型であることを示した。有理数係数ホモロジー 3-球面上のサイバーグ-ウィッテンフレアーホモロジーのもう一つの構成は、Manolescu (2003)Froyshov (2010)により与えられた。サイバーグ-ウィッテンフレアーホモロジーとモノポールフレアーホモロジーとは、一致すると予想されているが、証明されてはいない。

ヒーガードフレアーホモロジー

ヒーガードフレアーホモロジー は、ピーター・オズバス英語版ゾルタン・ザボー(Zoltan_Szabo)によるspinc 構造を持つ閉3次元多様体の不変量です。ラグランジアンフレアーホモロジー(後出)と類似した構成を経て、多様体のヒーガード分解英語版と使って構成された。Kutluhan, Lee & Taubes (2010)では、ヒーガードフレアーホモロジーとサイバーグ-ウィッテンフレアーホモロジーが同型であるという証明がアナウンスされた。またColin, Ghiggini & Honda (2011) では、ヒーガードフレアーホモロジーに(逆の向きづけを)プラスしたバージョンと、埋め込まれた接触ホモロジーが同型であることを証明したことがアナウンスされた。

3次元多様体の中の結び目は、ヒーガードフレアーホモロジー群のフィルトレーションを導き、フィルトレーションされたホモとピータイプは強力な結び目不変量で、結び目フレアーホモロジーと呼ばれる。これはアレクサンダー多項式カテゴリ化英語版(categorification)する。結び目フレアーホモロジーはOzsvath & Szabo (2003)で定義され、またこれとは独立にRasmussen (2003)によっても定義された. 結び目フレアーホモロジーは、結び目種数を識別することがしられている。Manolescu, Ozsvath & Sarkar (2009)は、ヒーガード分解のグリッド図式[5]を用いて、結び目フレアーホモロジーを組み合わせ的に構成した。

結び目上で分岐するS^3の二重被覆のヒーガードフレアーホモロジーは、コバノフホモロジースペクトル系列によって、関連付けられる。(Ozsvath & Szabo 2005).

上に「ハット」のついたヒーガードフレアーホモロジーは、Sarkar & Wang (2010)で導入された. 「プラス」と「マイナス」のついたヒーガードフレアーホモロジーと関連するオズバス-ザボー(Ozsvath-Szabo)の4次元多様体不変量は、(Manolescu, Ozsvath & Thurston 2009)に示されているように、組み合わせ的に記述することができる.

埋め込まれた接触ホモロジー

ミカエル・ハッチングスによれば、埋め込まれた接触ホモロジーは、(クリフォード・タウベス英語版の仕事である)サイバーグ-ウィッテンフレアーホモロジーの中のとspinc構造の選択に対応する第二ホモロジークラスを持つ3次元多様体の不変量に同型である。また結果として(Kutluhan, Lee & Taubes 2010Colin, Ghiggini & Honda 2011) でアナウンスされているが)(向きを逆にした)ヒーガードフレアーホモロジーのプラスバージョンに同型である。タウベスのグロモフ不変量英語版の拡張としてみることが可能でもあるので、この不変量はサイバーグ・ウィッテン不変量と同値であることが知られている。このことは閉じた 4次元シンプレクティック多様体からある非コンパクトなシンプレクティック4次元多様体 (つまり、接触3次元多様体と R との積)へ拡張される. この構成はシンプレクティック場の理論の類似で、閉じたレーブ軌道英語版のある集合により生成され、この微分(写像)がレーブ軌道のある集まりに端点を持つ正則曲線の数を数える;SFT と異なるところは、生成するレーブ軌道の集まりについての技術的な条件と、端点でフレドホルム指数 1 を持つすべての正則曲線を数えないが、「ECH指数」により与えられる移動的な条件も満たすもののみ数える。このことは特に考えている曲線が埋め込まれていることを意味する。

3次元接触多様体は任意の接触形式に対して閉じたレーブ軌道を持つであろうというワインシュタイン予想英語版が、ECH が非自明な多様体で成立する。このことはタウベスにより、ECH 密接に関連するテクニックを使い証明された;この仕事を拡張すると、ECH と SWF の間の同型が得られる。ECH の(うまく定義できる)多くの構成は、この同型に依拠している。(Taubes 2007).

ECH の接触要素は、特に素晴らしい形をしていて:レーブ軌道の空集合に付随するサイクルである。

埋め込まれた接触ホモロジーは、(境界があってもよい)曲面のシンプレクティック写像のトーラス写像を定義するかもしれず、周期フレアーホモロジーとして知られている。ECH は、曲面のシンプレクティック写像のシンプレクティックフレアーホモロジーを一般化する。より一般的には、3次元多様体の安定ハミルトニアン構造英語版の観点から定義されるかもしれない。このことは、接触構造、安定ハミルトニアン構造がゼロにならないベクトル場(レーブベクトル場)を定義することと似ている。ハッチングスとタウベスは、これらに対するワインシュタイン予想の類似、つまりいつでもこれらが閉軌道を持っていることを証明した(ただし、2-トーラスの写像トーラスではない場合とする)。


  1. ^ コボルディズムのパンツ分解の積のことであり、位相的場の理論の公理的な取り扱いで重要な役割を果たします
  2. ^ サイバーグ・ウィッテン・ゲージ理論英語版
  3. ^ コーシー-リーマン方程式と擬正則曲線の定義式との関係は、古典的擬正則曲線のコーシー-リーマンの方程式との類似(Analogy with the classical Cauchy-Riemann equations)に、擬正則曲線英語版の記載がある。
  4. ^ 英語版では、"Floer Homology"にリンクが張られてるが記載がないので、記載のある文献を上げる。
  5. ^ 2次元平面上へ結び目を射影して、平面の上で格子を描き、格子との交点に符号を与えて、結び目不変量を求める組み合わせ的手法のこと
  6. ^ クラスタホモロジーとは、ディスクが非局所的に余次元1でバブルになるので、代数的にモデリングすることが困難になる点を、モースフローを次のように拡張することで、克服する方法です。擬正則ディスクのモジュライ空間をラグランジュ部分多様体の上のモース函数を、負のグラジエントフローまで拡張すると、クラスタ化されたモジュライ空間ができます。これらをコンパクト化すると、次数付きの可換微分代数ができ、このホモロジーがクラスタホモロジーと呼ばれている。
  7. ^ ゲージ理論
  8. ^ DG-圏は、Differentail Graded Categoryの訳語である。
  9. ^ コンパクト化(compactification)の意味は、数学と物理(弦理論)では異なっている。ここでは、数学側の意味へリンクをはっている。物理側(特に弦理論)はコンパクト化 (物理学)である。





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「フレアーホモロジー」の関連用語

フレアーホモロジーのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



フレアーホモロジーのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのフレアーホモロジー (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS