SR1法
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/05 14:50 UTC 版)
SR1法(SR1ほう、別称:対称ランクワン法、たいしょうランクワンほう、英: Symmetric Rank 1)とは、2点の導関数(勾配)の情報に基づいてヘッセ行列を更新する準ニュートン法の一種である。SR1法は多次元の問題に対するセカント法を一般化させたものである。更新される行列は対称行列であることは保証されるが、正定値性については保証されない。
SR1法で近似したヘッセ行列の列は緩い条件下の下で収束することが知られている。実用上でSR1法は他の解法(BFGS法やDFP法)よりも早く真のヘッセ行列に収束することが数値実験により知られている。[1][2]。SR1法は疎な行列や部分分割できる問題に対して計算上の利点を有する[3]。
2階微分可能な連続関数を
一般 | |
---|---|
微分可能 |
|
凸縮小化 | |||||||
---|---|---|---|---|---|---|---|
線形 および 二次 |
|
系列範例 (Paradigms) | |||||
---|---|---|---|---|---|
グラフ理論 |
| ||||
ネットワークフロー (最大流問題) |
|