Operator theoryとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > Operator theoryの意味・解説 

作用素論

(Operator theory から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/16 13:53 UTC 版)

数学における作用素論(さようそろん、: Operator theory)は、微分作用素積分作用素をはじめとする線型作用素の研究である。各作用素は、有界性閉性などといった特徴によって抽象的に表すことができ、また非線型作用素なども視野に含むこともあり得る。そのような研究は函数空間の位相に非常に依存しており、函数解析学の一分科を成す。

作用素の集合が体上の多元環を成すならば、それを作用素環と呼ぶ。作用素環を記述することもまた作用素論の一部である。

個別の作用素論

個々の作用素論では、個別に与えられた作用素の性質や分類について扱う。例えば、スペクトルを用いた正規作用素の分類はこの範疇に属する。

作用素のスペクトル

スペクトル定理線型作用素行列に関する無数の結果の総称である[1]。広義のスペクトル定理は、作用素や行列が対角化可能である(即ち適当な基底の下で対角行列に表せること)ための条件を提示するものをいう。この対角化可能の概念は直接には有限次元空間に対するものだが、無限次元空間上の作用素に対しては少々の修正を要する。一般に、スペクトル定理はもっとも単純な場合として乗算作用素によって形作ることのできる線型作用素のクラスを同定するものである。より抽象的には、スペクトル定理は可換 C-環に関する主張ということができる。歴史的背景はスペクトル論の項を参照。

スペクトル定理が適用できるような作用素の例としては、自己随伴作用素やより一般にヒルベルト空間上の正規作用素などが挙げられる。

スペクトル定理はまた、作用素の作用する台となるベクトル空間に関する(スペクトル分解固有分解固有値分解)などと呼ばれる)標準分解 (canonical decomposition) をも提示する。

正規作用素

複素ヒルベルト空間 H 上の正規作用素は、連続線型作用素 N: HH であって自身のエルミート共軛 N可換 (NN = NN) となるものである[2]

正規作用素はそれに対するスペクトル定理が成り立つという点で重要である。今日では正規作用素のクラスはよく理解されている。正規作用素の例には

などが挙げられる。また、正規行列Cn を有限次元ヒルベルト空間とみるときの正規作用素のことと考えることができる。

スペクトル定理は行列のより一般のクラスに拡張できる。A は有限次元内積空間上の作用素とする。A正規行列であるとは、AA = AA を満たすことを言う。A が正規であるための必要十分条件が「それがユニタリ行列で対角化可能であること」であることを示すことができる。実際、シューア分解により A = UTUU はユニタリ、T は上三角)と書くと、A は正規ゆえ TT = TT となり、T は対角行列でなければならない(正規な上三角行列は対角行列である)。逆は明らか。

即ち、A が正規であるための必要十分条件は、ユニタリ行列 U対角行列 D




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Operator theory」の関連用語

Operator theoryのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Operator theoryのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの作用素論 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS