Moranモデル
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/01/05 08:54 UTC 版)
Moranモデルは世代が重複することを想定したモデル。各タイムステップにおいて、自身のコピーを生む1個体、死亡する1個体を選ぶ。その結果、任意の対立遺伝子のコピー数は1上昇したり、1減少したり、或いは一定となる。よって、このモデルの遷移確率行列は、一般的に三重対角行列となる。これより、Wright–Fisher モデルよりも、Moranモデルの方が、数学的に解を求めやすいと言える。その一方で、実際のコンピュータシミュレーションではWright–Fisher モデルを使ったほうが、計算にかかるステップ数が少なくすむため楽である。これは、Moranモデルでは、一世代の計算をするためにNタイムステップ(N:有効集団サイズ)かかるのに対し、Wright–Fisher モデルは1ステップで済むためである。 実際、MoranモデルとWright–Fisher モデルは似た結果が得られる。しかし、Moranモデルの方が遺伝的浮動の進行が速い。
※この「Moranモデル」の解説は、「遺伝的浮動」の解説の一部です。
「Moranモデル」を含む「遺伝的浮動」の記事については、「遺伝的浮動」の概要を参照ください。
- Moranモデルのページへのリンク