IS-LM分析
![]() | この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。(2011年8月) |

IS–LM分析(アイエスエルエムぶんせき)または IS–LMモデル (IS–LM model) とは、国民所得と利子率を用いて財市場と貨幣市場の同時均衡を分析することである。また、短期における価格硬直性を仮定している。ハンセン=ヒックスモデルとも呼ばれる。
縦軸に利子、横軸に国民所得をとり、財市場の均衡条件を表す IS 曲線と貨幣市場の均衡条件を表す LM 曲線を描くと、IS 曲線と LM 曲線の交点として財・貨幣同時均衡状態における国民所得と利子率が求められる。
IS 曲線の通らない点では財市場は不均衡状態にあり、IS 曲線の左側(下)の領域は財の超過需要、右側(上)の領域は財の超過供給状態にあること示す。
LM 曲線の通らない点では貨幣市場は不均衡状態にあり、LM 曲線の左側(上)の領域は貨幣の超過供給、右側(下)の領域は貨幣の超過需要状態にあることを示す。
IS–LM とは、I:投資 (Investment)、S:貯蓄 (Saving)、L:流動性選好 (Liquidity Preference)、M:貨幣供給 (Money Supply) のことで、IS と LM はそれぞれ財市場と貨幣市場が均衡しているときに釣り合うもの同士を示している。
歴史
IS–LM 分析は、1936年9月にオックスフォード大学で開かれた計量経済学会にその萌芽を見ることができる。ロイ・ハロッド、ジョン・ヒックス、ジェイムズ・ミードらはジョン・メイナード・ケインズの『一般理論』を数理モデルとしてまとめることを試み、論文を執筆していた。ハロッドの草稿を見たヒックスは IS–LM モデルを考えつき、1937年にそのアイデアを論文 Mr. Keynes and the Classics: A Suggested Interpretation [1] として発表した。なお当初は "LM" ではなく "LL" の略語が用いられていた。
ヒックスは後に IS–LM モデルがケインズ理論の重要な点を見逃していることを認め、IS–LM モデルや一般の均衡理論に対して、適用範囲の非常に限られた "classroom gadget" であると批判した[注 1][2]。 第一の問題は、ケインズはその枠組みを超えることを試みているにもかかわらず、実物部門と金融部門を完全に分離して扱っていることであり、 加えて、流動性選好は不確実性の存在があってはじめて意味を成すにもかかわらず、均衡モデルは不確実性を無視していることも問題とした[注 2][2]。 現代のマクロ経済学者の多くは IS–LM モデルを現実の経済を理解するための最低限の近似でしかないと考えている。
IS–LM モデルが不完全なモデルであることは広く認められていることだが、教育的な道具として、マクロ経済学者がより詳細な方法で解決を試みるような問題に対し、その理解を促す目的で使われている。 実際、ニュー・ケインジアンやリアルビジネスサイクル理論が台頭した結果、IS–LM モデルは多くの学部生向けのマクロ経済学の教科書では紹介されているが、ほとんどの大学院生向けの教科書では省かれている[3]。
IS 曲線の導出

IS 曲線は投資関数 I (r) に対する現実支出 Y と計画支出 E の均衡条件によって決まる。均衡条件は、縦軸を総需要、横軸を国民所得にとったグラフ上での 2 つの支出曲線 Y, E の交点として視覚化される (ケインジアンの交差図)[4]。IS 曲線の導出は以下の通り[4]。
ケインズの仮定では、短期生産(所得)の水準は家計・企業・政府の支出計画により決まるとされている。このとき計画支出 E は
IS曲線 IS 曲線(アイエスきょくせん、IS curve)は、財市場[注 3] の均衡を達成する国民所得 Y と利子率 r の組み合わせが描く曲線である。財市場の均衡とは、財市場における有効需要と供給が一致することを指す。
有効需要は以下の形で与えられる。
LM曲線 LM曲線(エルエムきょくせん、LM curve)とは、貨幣市場の均衡を達成する国民所得 Y と利子率 r の組み合わせを表した曲線である。貨幣市場は貨幣の供給[注 4] と貨幣の需要で成立している。
マネーサプライ(預金)は中央銀行が管理している貨幣(マネタリーベース)の供給量ではなく、銀行の信用創造(貸出行動)の活発度に依存して決定される。
一方で貨幣の需要は、財を購入する時に使うための取引需要 (transactions demand) や、債券保有による損失を防ぐために債券よりも貨幣として保有しようとする投機的需要(Speculative demand, または資産需要)で構成される。
- IS–LM modelのページへのリンク