正弦・余弦変換とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 正弦・余弦変換の意味・解説 

正弦・余弦変換

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2012/07/27 12:56 UTC 版)

数学におけるフーリエ正弦・余弦変換(せいげんよげんへんかん、英語: sine and cosine transforms)とは、連続フーリエ変換の特別なもので、それぞれ奇関数偶関数の変換を行う際に自然に生じるものである。

一般的なフーリエ変換

によって定義される。この積分オイラーの公式を適用することにより

が得られる。これは二つの積分の差として、次のように記述される:

フーリエ正弦変換およびフーリエ余弦変換は、この式から導くことが出来る。

目次

フーリエ正弦変換

フーリエ正弦変換は、奇関数に対して連続フーリエ変換を行う際に自然に生じる。上述のような一般的なフーリエ変換において、もし f(t) が奇関数であるなら、積 f(t)cosωt も奇関数となる一方で、積 f(t)sinωt は偶関数となる。その積分区間が原点について対称(すなわち -∞ から +∞ まで)であるため、一つ目の積分はゼロとなり、二つ目の積分は

と簡略化される。これがすなわち奇関数 f(t) に対するフーリエ正弦変換である。その変換された関数 F(ω) もまた奇関数であることは明らかであり、一般的な逆フーリエ変換英語版の解析と同様に、第二正弦変換

を得ることが出来る。一般的な連続フーリエ変換に関する議論と同様に、変換の数値的な因数はそれらの積によってのみ一意に定められる。したがって、虚数単位 i および -i は除外することが出来、より一般的な形でのフーリエ正弦変換は

および

となる。

フーリエ余弦変換

フーリエ余弦変換は、偶関数に対して連続フーリエ変換を行う際に自然に生じる。上述のような一般的なフーリエ変換において、もし f(t) が偶関数であるなら、積 f(t)cosωt も偶関数となる一方で積 f(t)sinωt は奇関数となる。積分区間が原点について対称であるため、二つ目の積分はゼロとなる一方で、一つ目の積分は

と簡略化される。これが、偶関数 f(t) に対するフーリエ余弦変換である。変換された関数 F(ω) も偶関数であることは明らかで、一般的な逆フーリエ変換に対する解析と同様に、第二余弦変換

を得ることが出来る。

関連項目

参考文献

  • Mary L. Boas, Mathematical Methods in the Physical Sciences, 2nd Ed, John Wiley & Sons Inc, 1983. ISBN 0-471-04409-1



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「正弦・余弦変換」の関連用語

正弦・余弦変換のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



正弦・余弦変換のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの正弦・余弦変換 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS