単体的ホモロジーとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 単体的ホモロジーの意味・解説 

単体的ホモロジー

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/03/22 10:11 UTC 版)

代数位相幾何学において、単体ホモロジーとはある単体的複体ホモロジー群の系列のことである。これは、複体の特定の次元の穴の数の概念を形式化する。これにより、連結成分の数(次元0の場合がいわゆる連結成分の数)が一般化される。

単体的ホモロジーは、n-単体を構成要素として位相空間を研究する方法として生じた。n-単体とは三角形のn-次元アナログであり、点(0-単体)、線分(1-単体)、三角形(2-単体)、および四面体(3-単体)が含まれる。定義上、そのような空間は単体的複体位相同型である(より正確には、集合の族に対応する抽象的単体的複体の幾何学的実現に位相同型である)。このような同相写像は、与えられた空間の三角化と呼ばれる。すべての滑らかな多様体を含む、対象として興味深い多くの位相空間は三角化可能である(Cairns and Whitehead).[1]:sec.5.3.2

任意の抽象的単体的複体に対して、その単体的ホモロジーは、単純な計算方法によって定義される。単体的ホモロジーが関連する位相空間にのみ依存して定まることは注目に値する事実である。 [2] :sec.8.6この事実のお蔭で、あるスペースと別のスペースとを区別するための計算可能な方法が得られる。

定義

左は2-単体(三角形)の境界のそのさらに境界を取る様子。右は1-チェーン(3つの1-単体(線分)の集まり)の境界を取る様子。左右ともに、最終的に0となる。0-単体(点)の正と負の両方が1回ずつ生じており、それらの合計は0である。ちなみに、境界の境界を取るとその結果は必ず0である。自明でないサイクルは閉じる。その閉じる様子は、単体の境界と似ている。しかしながら、サイクルの境界は0となり、サイクル自体は、単体の境界でも、単体的複体から得られるチェーンでもない。実際、自明な1-サイクルは
2個の1-穴を持つ単体的複体

ホモロジー群

Sk次ホモロジー群Hkアーベル群の群(剰余群)として定義する。

したがって、ホモロジー群Hk(S)が0にならないのは、境界ではないk-サイクルがS上にある場合に限ることとなる。境界ではないk-サイクルは、k次元の穴に相当するので、ある意味で、単体的複体にk次元の穴の存在を意味する。たとえば、図に示されているように、内部のない2つの三角形が1辺で張り合わさっている単体的複体Sについて考える。各三角形のエッジは、サイクルを形成するように方向付けることができる。この単体的複体の作り方から言って、これらの2つのサイクルは境界ではない(すべての2チェーンがゼロであるため)。ホモロジー群H1(S)は、前記2サイクルを基底とするZ2と準同型であることを計算することができる。これにより、Sには2つの「1次元の穴」があるという曖昧な考えを数学的に正確に述べることができる。

穴の次元はさまざまである。 k次ホモロジー群のランク

という数であり、Sのkベッチ数と呼ばれる。これによりSのk次元の穴の数の測ることができるようになる。

実装

  • パーシステントホモロジーを計算するためのMATLABツールボックス, Plex(Vin de Silva 、 Gunnar Carlsson )は、このサイトで入手できる。
  • C ++のスタンドアロン実装はPerseusおよびDionysusソフトウェアプロジェクトの一部として利用できる。

参照

参考文献

  1. ^ Prasolov, V. V. (2006), Elements of combinatorial and differential topology, American Mathematical Society, ISBN 0-8218-3809-1, MR 2233951 
  2. ^ Armstrong, M. A. (1983), Basic topology, Springer-Verlag, ISBN 0-387-90839-0, MR 0705632 

外部リンク




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  単体的ホモロジーのページへのリンク

辞書ショートカット

すべての辞書の索引

「単体的ホモロジー」の関連用語

単体的ホモロジーのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



単体的ホモロジーのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの単体的ホモロジー (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS