ルジャンドル予想とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ルジャンドル予想の意味・解説 

ルジャンドル予想

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/11/02 15:48 UTC 版)

数学上の未解決問題
n2(n+1)2の間には常に少なくとも1つの素数が存在するか

ルジャンドル予想: Legendre's conjecture)とは、任意の自然数 n について、n2(n + 1)2 の間には必ず素数が存在するという予想である。フランス数学者アドリアン=マリ・ルジャンドルにより提起された。2022年現在、未解決問題となっている。

概要

ルジャンドル予想は素数の間隔に関連した予想の一つである。もし予想が正しいとすれば、素数 p と次に大きい素数までの間隔は、高々 pオーダーになる。スウェーデンの数学者ハラルド・クラメールは、素数の間隔がより小さく (log p)2 のオーダーになると予想した。これが正しいとすれば、十分大きな n に関してルジャンドル予想が成り立つことになる。

素数定理より、n2(n + 1)2 の間に含まれる素数の個数(オンライン整数列大辞典の数列 A014085)は、

この項目は、数論に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めていますプロジェクト:数学Portal:数学)。




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ルジャンドル予想」の関連用語

ルジャンドル予想のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ルジャンドル予想のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのルジャンドル予想 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS