リアプノフ指数
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/30 13:11 UTC 版)
リアプノフ指数(リアプノフしすう、英: Lyapunov exponent)とは、力学系においてごく接近した軌道が離れていく度合いを表す量である。リャプノフ指数とも表記される[1]。ロシア人科学者 Алекса́ндр Ляпуно́в(アレクサンドル・リプノーフ、Aleksandr Lyapunov)にその名をちなむ[2]。
注釈
出典
- ^ a b アリグッドほか 2012b, p. 1.
- ^ イアン・スチュアート、須田不二夫・三村和男(訳)、1998、『カオス的世界像 ―非定形の理論から複雑系の科学へ』第一版、白揚社 ISBN 4-8269-0085-6. p. 377
- ^ Strogatz 2015, pp. 349–350.
- ^ a b 合原 2011, p. 158.
- ^ a b 下條 1992, p. 86.
- ^ a b 高安 2001, p. 82.
- ^ a b Strogatz 2015, p. 400.
- ^ アリグッドほか 2012b, pp. 3–4.
- ^ a b 下條 1992, p. 91.
- ^ a b c 高安 2001, p. 83.
- ^ a b 船越 2008, p. 146.
- ^ 金子、津田 1997, p. 47.
- ^ a b c Strogatz 2015, p. 401.
- ^ 合原 2011, p. 161.
- ^ a b 下條 1992, p. 87.
- ^ 船越 2008, p. 157.
- ^ アリグッドほか 2012a, pp. 117–118.
- ^ a b c d e 合原 2011, p. 165.
- ^ 船越 2008, p. 171.
- ^ 船越 2008, p. 181.
- ^ a b 合原 2011, p. 163.
- ^ a b 金子、津田 1997, p. 115.
- ^ 船越 2008, p. 168.
- ^ a b c d e 高安 2001, p. 84.
- ^ a b ベルジュほか 1992, p. 265.
- ^ 合原 2011, pp. 164–165.
- ^ 小室 2005, p. 17.
- ^ 合原 2011, p. 167.
- ^ 小室 2005, p. 22.
- ^ a b 合原 2011, p. 164.
- ^ 高安 2001, pp. 83–84.
- ^ ベルジュほか 1992, pp. 261–262.
- ^ アリグッドほか 2012b, p. 8.
- ^ Chaotic oscillators: theory and applications, Tomasz Kapitaniak,pp287
- ^ 高安 2001, p. 93.
- ^ アリグッドほか 2012b, p. 11.
- ^ 合原 2011, p. 169.
- ^ アリグッドほか 2012b, p. 12.
- ^ a b c d Chlouverakis, Konstantinos E.; Sprott, J.C. (January 2005). “A comparison of correlation and Lyapunov dimensions”. Physica D: Nonlinear Phenomena (Elsevier) 200 (1–2): 156–164. doi:10.1016/j.physd.2004.10.006.
- ^ 合原一幸ほか 著、合原一幸 編『カオス―カオス理論の基礎と応用』(初版)サイエンス社、1990年、97頁。ISBN 4-7819-0592-7。
- ^ アリグッドほか 2012b, p. 15.
- ^ a b c アリグッドほか 2012b, p. 16.
- ^ アリグッドほか 2012b, pp. 11–12.
- ^ J. Kaplan and J. Yorke Chaotic behavior of multidimensional difference equations In Peitgen, H. O. & Walther, H. O., editors, Functional Differential Equations and Approximation of Fixed Points Springer, New York (1987)
リアプノフ指数と同じ種類の言葉
- リアプノフ指数のページへのリンク