ムーア・マシン
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/02 16:15 UTC 版)
![]() |
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。(2024年6月)
|

ムーア・マシン(Moore Machine)は、出力が(入力によらず)現在の状態によってのみ決定される有限オートマトンである。ムーア・マシンの状態遷移図は各状態の出力信号を含む。一方、ミーリ・マシンはマシンの「遷移」を出力に対応付ける。
ムーア・マシンという名称は提唱者であり状態機械の先駆者エドワード・ムーアの名から来ている。ムーアは Gedanken-experiments on Sequential Machines,(順序機械の思考実験)でムーア・マシンについて記述している(pp 129 – 153, Automata Studies, Annals of Mathematical Studies, no. 34, Princeton University Press, Princeton, N. J., 1956)。
多くの電子機器は順序論理で設計されている。順序論理はムーア・マシンの限定された形態であり、状態はクロック信号が変化したときのみ変化する。一般に、現在状態はフリップフロップに格納され、クロック信号はフリップフロップのクロック入力に接続される。クロック同期システムは準安定性問題を解決する方法のひとつである。
典型的な電子的ムーア・マシンは組合わせ論理の連結によって現在状態から出力にデコードを行う。状態が変化すると、その回路の通じて即座に出力も変化する(変化しない場合もある)。設計上の技法として出力が変化する際に不正な中間的出力が発生しないようにする必要がある。一般には出力を利用する側もクロック同期して中間的な不正な出力は無視される。出力はムーア・マシンの状態が変化しない限りそのままである(LEDは点灯したまま、モーターは回転したまま、など)。
形式的定義
ムーア・マシンは { S, Σ, Λ, T, G,
ムーア・マシン
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/14 04:59 UTC 版)
この有限オートマトンは開始動作のみを使用する。すなわち、出力は状態にのみ依存する。ムーア・モデルの利点はふるまいを単純化できることである。図6の例はエレベーターの扉についてのムーア・マシンを示している。この有限オートマトンは「開放命令」と「閉鎖命令」というふたつの命令を理解し、それによって状態が変化する。「開放途中」状態にある開始動作(E:)は扉の開くところを監視し始めることを示し、「閉鎖途中」状態にある開始動作(E:)は扉の閉じるところを監視し始めることを意味する。「開放」と「閉鎖」状態は動作を伴わないが、これらは外界(つまり他のオートマトン)に扉が開いているとか閉まっているといった状況を知らせる意味を持つ。
※この「ムーア・マシン」の解説は、「有限オートマトン」の解説の一部です。
「ムーア・マシン」を含む「有限オートマトン」の記事については、「有限オートマトン」の概要を参照ください。
- ムーア・マシンのページへのリンク