マージンに基づくアルゴリズム
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2015/08/08 10:19 UTC 版)
「マージン分類器」の記事における「マージンに基づくアルゴリズム」の解説
多くの分類器はそれぞれのサンプル要素に対してマージンを設定できる。しかしながら、限られたいくつかの分類器だけがデータセットからの学習によって得られたマージンの情報を利用できる。 多くのブースティングアルゴリズムは、マージンによってサンプルに重み付けをするという発想に依拠している。凸損失関数 (convex loss function) を利用する場合(AdaBoost, LogitBoost(英語版), また AnyBoost(英語版) 系のアルゴリズムを使うなど)、高いマージンを持つサンプルはより低いマージンのサンプルより小さな(あるいは等しい)重みがつけられる。このことからブースティングアルゴリズムはマージンの低いサンプルに対して重点的に重みをつけることとなる。 凸損失を利用しない BrownBoost(英語版) のようなアルゴリズムでは、マージンはサンプルの重みを左右し得るが、凸損失関数を利用する場合と異なり重みとマージンの間の関係は単調ではなくなる。ブースティングアルゴリズムの中には、最小マージンを最大化するようなものが存在する(たとえば Warmuth, Glocer & Rätsch 2007 を参照)。 サポートベクターマシンはサンプルを分割する超平面のマージンを最大化する。(超平面によって完全にデータを分離できないような)ノイズありのデータを用いて訓練されたサポートベクターマシンはソフトマージンを最大化する(詳細はサポートベクターマシンを参照)。 多数決パーセプトロン (voted perceptron) は古典的なパーセプトロンの反復適用を基礎とするマージン最大化アルゴリズムである。
※この「マージンに基づくアルゴリズム」の解説は、「マージン分類器」の解説の一部です。
「マージンに基づくアルゴリズム」を含む「マージン分類器」の記事については、「マージン分類器」の概要を参照ください。
- マージンに基づくアルゴリズムのページへのリンク