最尤推定 定式化

最尤推定

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/03/20 23:22 UTC 版)

定式化

生物の系統推定への応用

最尤法は生物の分子系統推定(分子系統樹作成)にも応用される。系統推定における最尤法は、塩基やアミノ酸配列の置換に関する確率モデルを仮定した上で、想定される樹形ごとに手持ちのデータ(配列の多重アラインメント)が得られる尤度を求め、最も尤度の高い樹形を採用する方法である[3]

最大節約法距離行列法と比較して正確性の高い樹形が得られるとされるが、使用する進化モデルを変更すると系統解析の結果が大きく変化する場合がある[3]。また、系統樹の枝(解析の対象とする生物の系統)ごとの進化速度が異なる場合、枝長(形質状態の遷移回数)の見積もりを誤って不正確な系統樹を導く場合もある[4]。さらに、最大節約法やベイズ法と比較して計算速度も遅い[5]。こうした欠点はソフトウェアやアルゴリズムの改良により徐々に解消されつつある[4]

2021年時点では最も広く分子系統解析に使用されている系統推定法である[4]。最尤法を用いる代表的な系統推定ソフトウェアにはPAUP*英語版やTreefinderおよびRAxMLがある[5]

理論的妥当性

最尤推定の統計的推論としての最終目標は、手元の限られたデータ(標本)から真の母集団分布を得ることである。しかし一般に真の母集団分布は観測できず、ゆえに最尤推定された統計モデルが「正しいか」(真の母集団分布と一致するか)は検証が不可能である。人間にできることは推定されたモデルと真の分布のずれ(誤差)がどのように統計的に振る舞うかを検証することだけである(詳しくは汎化誤差)[6]

最尤推定そのものはあくまで、仮定された分布と観測されたデータから得られる尤度を最大化するパラメータを求める方法論である。最尤推定の枠組みは「常に真の分布と一致した分布を得られる」とは主張していないし「最尤推定を用いることが真の分布へ近い分布を得る唯一最良の方法である」とも主張していない。

これらの疑問点は汎化誤差をはじめとする研究によって検証される。


  1. ^ Romano & Siegel 1986, p. 182.
  2. ^ a b Lehmann & Casella 1998, p. 445.
  3. ^ a b 隈啓一、加藤和貴「実践的系統樹推定方法」『化学と生物』第44巻第3号、2006年、185-191頁、doi:10.1271/kagakutoseibutsu1962.44.185 
  4. ^ a b c 松井求「分子系統解析の最前線」『JSBi Bioinformatics Review』第2巻第1号、2021年、30-57頁、doi:10.11234/jsbibr.2021.7 
  5. ^ a b 三中信宏分子系統学:最近の進歩と今後の展望」『植物防疫』第63巻第3号、2009年、192-196頁。 
  6. ^ 渡辺澄夫. “ベイズ推論:いつも何度でも尋ねられること”. 渡辺澄夫. 東京工業大学. 2019年8月1日閲覧。





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「最尤推定」の関連用語

最尤推定のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



最尤推定のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの最尤推定 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS