スカラー場


スカラー場(スカラーば、英: scalar field)とは、数学および物理学において、空間の各点に数学的な数やなんらかの物理量のスカラー値を対応させた場である。スカラー場には「空間(あるいは時空)の同一点におけるスカラー場の値が、観測者が同じ単位を用いる限りにおいて必ず一致する」という意味で座標に依存しない (coordinate-independent) ことが要求される。物理学で用いられるスカラー場の例としては、空間全体にわたる温度分布や、液体の圧力分布、ヒッグス場のようなスピンを持たない量子場などが挙げられる。これらの場はスカラー場の理論における主題である。
定義
数学的には、領域 U 上のスカラー場というのは、U 上の実または複素数値の函数や超函数のことであり[1][2]、その定義領域 U はユークリッド空間やミンコフスキー空間の部分集合とする(あるいはもっと一般の多様体の部分集合でもいい)。数学においてスカラー場を考えるときは、場に連続性や適当な階数の連続的微分可能性を課して考えるのが普通である。スカラー場は 0-階のテンソル場であり[3]、密度束や微分形式、あるいはもっと一般のテンソル場と同様の概念として、単に函数として考えるというのとは異なることを表すのに「スカラー場」という呼称が使われる。
物理学的には、スカラー場はさらにそれがどのような物理単位についてのものであるかということによっても区別される。この文脈では、スカラー場は物理系がどのような座標系において記述されているかに依存してはならない(つまり、ふたりの観測者が同じ物理単位を用いる限り、物理空間の任意に与えられた点において、ふたりが観測するスカラー場の値は必ず一致していなければならない)。スカラー場は(領域の各点にベクトルが付随する)ベクトル場やテンソル場、スピノル場といったものと(あるいは少々微妙だが擬ベクトル場とも)対照を成すものである。
物理学における応用
物理学では、何らかの力によるポテンシャルエネルギーを表現するのによく使われる。力場はベクトル場であるが、なにかのスカラー場の勾配を取ったものとして表現できる。つまりベクトル場 F について、スカラー場 ψ との間に次のような関係があるとき、ψ を特に場 F のスカラーポテンシャルと言う。
「scalar field」の例文・使い方・用例・文例
- scalar fieldのページへのリンク