| この記事は 英語版の対応するページを翻訳することにより充実させることができます。(2024年5月)翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。
- 英語版記事を日本語へ機械翻訳したバージョン(Google翻訳)。
- 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。
- 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。
- 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。
- 翻訳後、
{{翻訳告知|en|Random forest|…}} をノートに追加することもできます。
- Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針についての説明があります。
|
ランダムフォレスト(英: random forest, randomized trees)は、2001年にレオ・ブレイマン(英語版)によって提案された[1]機械学習のアルゴリズムであり、分類、回帰、クラスタリングに用いられる。決定木を弱学習器とするアンサンブル学習アルゴリズムであり、この名称は、ランダムサンプリングされたトレーニングデータによって学習した多数の決定木を使用することによる。ランダムフォレストをさらに多層にしたアルゴリズムにディープ・フォレストがある。対象によっては、同じくアンサンブル学習を用いるブースティングよりも有効とされる。
アルゴリズム
学習
- 学習を行いたい観測データから、ブートストラップ法によるランダムサンプリングにより B 組のサブサンプルを生成する
- 各サブサンプルをトレーニングデータとし、B 本の決定木を作成する
- 指定したノード数
カテゴリ