Orbit (dynamics)とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > Orbit (dynamics)の意味・解説 

軌道 (力学系)

(Orbit (dynamics) から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/06/18 05:20 UTC 版)

力学系における軌道(きどう)とは、初期条件に対して時間発展のルールを適用したときに定まる、相空間上の点の集合である。連続的な時間を仮定した系だと、軌道は相空間内で一本の曲線となり、離散的な時間を仮定した系だと、軌道は相空間内で点列となる。

定義

一般

力学系を定める相空間X、時間を G、時間発展のルールを ϕ: G × XX とする。ある tG に固定したときの ϕ写像 ϕt と表し、Xxϕt(x) ∈ X である。G結合法則 t1 + t2 (t1, t2T) で表される構造を持ち、ϕt は、

  1. 二次元離散力学系の軌道の例。実部が正の複素固有値を持つ線形系で、渦状源点型の軌道すなわち回転しながら原点から離れていく軌道を取る。軌道は相平面上の点列となる(点をつなぐ矢印は補助のために示されている)。

    離散力学系は写像の反復によって定義される[24]。相空間上のある点 x0M写像 f: MM を繰り返し適用することで、x0, f (x0), f2(x0), … fn(x), … という点列が得られる。点列は x0, x1 = f (x0), x2 = f2(x0), … xn = fn(x0), … とも表す[25]。この点列が離散力学系の軌道である[25]。多くの力学系で f連続写像である[26]

    例えば、 上の正弦関数 f(x) = sin(x) で定義される離散力学系を考える。x0 = 123 とすると、

    二次元連続力学系の軌道の例。実部が正の複素固有値を持つ線形系で、渦状源点型の軌道すなわち回転しながら原点から離れていく軌道を取る。軌道は相平面上の曲線となる。

    連続力学系を定義する一番普通の方法は、微分方程式による定義である[31]。相空間 Xユークリッド空間多様体だとする。未知関数 x(t) ∈ X常微分方程式系




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Orbit (dynamics)」の関連用語

Orbit (dynamics)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Orbit (dynamics)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの軌道 (力学系) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS