Optimal_Asymmetric_Encryption_Paddingとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > Optimal_Asymmetric_Encryption_Paddingの意味・解説 

Optimal Asymmetric Encryption Padding

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2016/06/04 13:53 UTC 版)

ナビゲーションに移動 検索に移動

Optimal Asymmetric Encryption Padding (略称:OAEP、試訳:「最適非対称暗号化パディング」)は、暗号理論において特殊な確定的暗号系 (落とし戸付部分領域一方向性置換) を安全に利用するための平文パディング手法の一つである。ミヒル・ベラーレ英語版フィリップ・ロガウェイ英語版によって1994年に考案され[1]、後にPKCS1英語版 と RFC 2437において標準化された。この手法を用いた暗号系はランダムオラクルモデルで適応的選択暗号文攻撃の下で暗号文識別不可能性英語版 (IND-CCA2安全性) を持つ。RSA暗号と組み合わせて使われることが多く、その場合はRSA-OAEPと呼ばれる。

概要

OAEPのアルゴリズムはFeistel構造の一種であり、非対称暗号化に先立って二つのランダムオラクルを用いて平文を加工する。この結果を何らかの安全な落とし戸付き一方向性関数英語版

OAEPの動作概念図

図中に現れる記号の意味は次の通り。

  • n はRSAの法などのビット数
  • k0 と k1 はプロトコルが定める整数
  • m は平文メッセージであり、n - k0 - k1 に等しいビット数を持つとする
  • G と H はランダムオラクルまたはプロトコルが定める何らかの暗号学的ハッシュ関数
  • r はランダムなビット列であり、k0 ビットの長さを持つとする

平文の符号化手順

  1. 平文に対して k1 個の 0 をパディングして、長さを n - k0 ビットとする。
  2. G によって r の長さを k0 ビットから n - k0 ビットに拡張する。
  3. m と G( r ) の間で排他的論理和を取り、結果としてビット列 X を得る。
  4. H によって X の長さを n - k0 ビットから k0 ビットに縮小する。
  5. r と H( X ) の間で排他的論理和を取り、結果としてビット列 Y を得る。
  6. X || Y を出力とする。(|| は左辺のビット列の右側に右辺のビット列を連結することを表す)

元の平文への復元手順

  1. Y と H( X ) の間で排他的論理和を取り、結果として r を得る。
  2. X と G( r ) の間で排他的論理和を取り、結果として m を得る。

これがAONT英語版安全性を持つ理由は、m を復元するにはまず X 全体と Y 全体を復元しなければならないからである。Y から r を復元するには X が必要であり、X から m を復元するには r が必要である。暗号学的ハッシュ値が1ビットでも変わると結果は全く変わってしまうので、X 全体と Y 全体が両方とも完全に復元されなければならない。

参考

参考文献

  1. ^ Bellare, Mihir; Rogaway, Phillip (1995), Eurocrypt '94 Proceedings, in A. De Santis, “Optimal Asymmetric Encryption -- How to encrypt with RSA”, Lecture Notes in Computer Science (SpringerVerlag) 950, http://www-cse.ucsd.edu/users/mihir/papers/oae.pdf 
  2. ^ Shoup, Victor (2001-09-18), OAEP Reconsidered, Saumerstr. 4, 8803 Ruschlikon, Switzerland: IBM Zurich Research Lab, http://www.shoup.net/papers/oaep.pdf 
  3. ^ Boneh, Dan (2001), CRYPTO 2001, “Simplified OAEP for the RSA and Rabin functions”, LNCS (SpringerVerlag) 2139: 275-291, http://rd.springer.com/chapter/10.1007%2F3-540-44647-8_17 
  4. ^ 藤崎, 英一郎; 岡本, 龍明; Pointcheval, David; Stern, Jacques (2001), RSA-OAEP is secure under the RSA assumption, “Advances in Cryptology — CRYPTO 2001”, Lecture Notes in Computer Science (Springer-Verlag) 2139: 260-274, http://eprint.iacr.org/2000/061.pdf 
  5. ^ P. Paillier; J. Villar (2006), “Asiacrypt 2006”, Trading One-Wayness against Chosen-Ciphertext Security in Factoring-Based Encryption, https://www.iacr.org/archive/asiacrypt2006/42840253/42840253.pdf 
  6. ^ D. Brown, “What Hashes Make RSA-OAEP Secure?”, IACR ePrint 2006/233, http://eprint.iacr.org/2006/223 
  7. ^ E. Kiltz; K. Pietrzak (2009), EUROCRYPT 2009, “On the security of padding-based encryption schemes (Or: why we cannot prove OAEP secure in the standard model)”, LNCS 5479: 389-406, https://www.iacr.org/archive/eurocrypt2009/54790389/54790389.pdf 2014年7月24日閲覧。 



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Optimal_Asymmetric_Encryption_Padding」の関連用語











Optimal_Asymmetric_Encryption_Paddingのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Optimal_Asymmetric_Encryption_Paddingのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのOptimal Asymmetric Encryption Padding (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS