Converse relationとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > Converse relationの意味・解説 

逆関係

(Converse relation から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/04/17 18:27 UTC 版)

ナビゲーションに移動 検索に移動

数学における二項関係逆関係(ぎゃくかんけい、: converse relation)は、関係(のグラフ)に属する順序対の成分を逆順にして得られる関係である。例えば、「~の子である」という関係の逆関係は「~の親である」という関係である。

定義

厳密に言えば、LX × YX から Y への関係とするとき、その逆関係 L−1

y L−1 xx L y

によって定まる関係をいう (Halmos 1975, p. 40)。これは

とも書ける。逆関係 L−1 などと書く記法は逆写像の記法の流用である。写像はその多くが逆写像を持たないのに対し、関係は必ず逆関係を持つ。 ただし、このような記法を用いているにもかかわらず、逆関係は関係の合成の意味での逆元にはなっていない、つまり一般には

であることに注意しなければならない。

逆関係は反対関係 (inverse relation) や(ダガー圏のよく知られた例として、転置行列と同様のものとして見て)(もとの関係の-)転置 (transpose) とも呼ばれ、Lc, LT, L, L˘ などとも書かれる。

性質

  • 自分自身を逆関係として持つ関係は対称関係ダガー圏英語版 の言葉で言えば、自己随伴 (self-adjoint))である。
  • 関係が反射的非反射的対称的反対称的非対称的推移的完全、三分的、 半順序全順序、狭義弱順序、全前順序(弱順序)、同値関係であるという性質は、逆関係に遺伝する。
  • 関係が拡張可能でも、その逆関係は必ずしも拡張可能ではない。
  • 関係をその逆関係に写す操作は、関係の圏 Rel にダガー圏の構造を与える。
  • 集合 X 上の二項関係全体の成す集合 B(X) は、関係を逆関係に写す操作を対合とする対合半群を成す。

通常の順序関係(狭義の順序でも半順序でもよい)の逆関係は、反対順序で与えられる。例えば

などとなる(ここでの括弧は明確化のためのもので必ずしも必要ではない)。

(inverses)

恒等関係をとおいた時、関係に対して、関係の合成にて ならばを右側裏関係といい、 ならばを左側裏関係という。また、に右(左)側裏関係が存在するときは右(左)に可逆な関係であるという。右に可逆かつ左に可逆であれば単に可逆あるいは両側可逆という。左に可逆ならば左全域的でなければならないし、右に可逆ならば右一意的でなければならない。ただしここでは関係の合成を、写像の合成の慣例に従った順で定義しているものとする。

写像の逆関係

写像が(写像として)可逆であるための必要十分条件は、写像の逆関係が再び写像となることである。この逆関係こそが逆写像である。

写像 f: XY の逆関係 f−1: YX

で定義される。これは必ずしも写像でなくてもよいが、f が単射であることを課さなければ f−1 は多価になってしまう。この条件は f−1部分写像であるためには十分であり、さらにこのとき f−1 が(全域)写像となるための必要十分条件が f全射(したがって全単射)となることであるのは明らかである。f全単射であるとき、f−1f逆写像と呼ばれる。

当然、の逆写像は との合成で恒等写像すなわち恒等関係を導くので、 を関係とみなせばはその裏関係である。

関連項目

注釈

参考文献




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Converse relation」の関連用語

Converse relationのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Converse relationのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの逆関係 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS