部分写像


数学において部分写像(ぶぶんしゃぞう、英: partial mapping)あるいは部分函数(英: partial function)は適当な部分集合上で定義された写像である。即ち、集合 X から Y への部分写像 f は X の任意の元に Y の元を割り当てることが求められる写像 f: X → Y の概念を一般化して、X の適当な部分集合 X' の元に対してのみそれを要求する。X′ = X となる場合には f は全域写像 (total function) と呼ばれ、これは写像と同じ概念を意味する。部分写像を考えるときには、その定義域 X' がはっきりとは分かっていないという場合もよくある。
基本概念
部分写像 f に対し f(x) が定義される値 x 全体の成す集合(上記の X')を f の定義域と呼び、D(f) や Def(f) のように表すのが典型的である。これに対し集合 X は f の始域(あるいは圏論においては「域」とも)呼ばれる。英語等では両者とも単に f の domain と呼ぶことがあるので注意が必要である(定義域を明確に domain of definition と呼ぶ流儀もあるが)。同様に codomain が f の像(値域)と終域(圏論では余域とも)の何れかの意味で用いられる。
始域 X, 終域 Y の部分写像を f: X ⇸ Y のように縦棒付き矢印であらわすことがある。あるいは
- 部分函数のページへのリンク