緯度モデル
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/18 16:14 UTC 版)
海面上では、緯度φでの重力加速度gφは次の式で推定される。 g ϕ = 9.780327 ( 1 + 0.0053024 sin 2 ϕ − 0.0000058 sin 2 2 ϕ ) m s 2 {\displaystyle g_{\phi }=9.780327\left(1+0.0053024\sin ^{2}\phi -0.0000058\sin ^{2}2\phi \right){\frac {\mathrm {m} }{\mathrm {s} ^{2}}}} これは1967年の国際標準重力公式である。ヘルメルト方程式やクレロー方程式とも呼ばれる。この式は、以下のように書くこともできる。 g ϕ = ( 9.8061999 − 0.0259296 cos ( 2 ϕ ) + 0.0000567 cos 2 ( 2 ϕ ) ) m s 2 {\displaystyle \ g_{\phi }=\left(9.8061999-0.0259296\cos(2\phi )+0.0000567\cos ^{2}(2\phi )\right)\,{\frac {\mathrm {m} }{\mathrm {s} ^{2}}}} または g ϕ = ( 9.780327 + 0.0516323 sin 2 ( ϕ ) + 0.0002269 sin 4 ( ϕ ) ) m s 2 {\displaystyle \ g_{\phi }=\left(9.780327+0.0516323\sin ^{2}(\phi )+0.0002269\sin ^{4}(\phi )\right)\,{\frac {\mathrm {m} }{\mathrm {s} ^{2}}}} gを求めるその他の公式には、WGS-84がある。 g ϕ = ( 9.7803267714 1 + 0.00193185138639 sin 2 ϕ 1 − 0.00669437999013 sin 2 ϕ ) m s 2 {\displaystyle \ g_{\phi }=\left(9.7803267714~{\frac {1+0.00193185138639\sin ^{2}\phi }{\sqrt {1-0.00669437999013\sin ^{2}\phi }}}\right)\,{\frac {\mathrm {m} }{\mathrm {s} ^{2}}}} WGS-84とヘルメルト方程式の差は、0.68×10-6 m/s2以下である。
※この「緯度モデル」の解説は、「地球の重力」の解説の一部です。
「緯度モデル」を含む「地球の重力」の記事については、「地球の重力」の概要を参照ください。
- 緯度モデルのページへのリンク