米田の補題
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/17 14:44 UTC 版)
米田の補題(よねだのほだい、英: Yoneda lemma)とは、小さなhom集合をもつ圏 C について、共変あるいは反変hom関手 hom(A , _), hom(_, A) から集合値関手 F への自然変換と、値となる集合 F(A) の要素との間に一対一対応が存在するという定理である。「米田の補題」という名称は、米田信夫に因んでソーンダース・マックレーンにより名付けられた[1][2][3]。その主張は、マックレーンによれば、米田の仕事に早くから現れていたという[4]。ただし、エミリー・リールによれば、この補題が初めて (明示的に) 論文に登場したのは Grothendieck (1960) である[5]。
米田の補題は、普遍性という概念の根幹に関わる重要な補題であり、また、圏論において「間違いなく最も重要な結果である」[6]「もしかしたら最も利用されているただ1つの結果かもしれない」[7]と言われている。
概要
主張の内容
C を局所的に小さい(locally small)圏とする。すなわち C の各対象 A, B に対して hom(A, B) は集合であるとする。対象 A を固定するとき、共変hom関手 HA = hom(A, _) : C → Set は対象 X に対して、集合 hom(A, X) を割り当て、射 f : X → Y に対して写像 hom(A, f) = f ◦ (_) : hom(A, X) → hom(A, Y) を割り当てる関手であった。さらに、 F : C → Set を集合値関手とし、HA から F へのすべての自然変換のクラス Nat(HA, F) について考える。
このとき、米田写像(Yoneda map)と呼ばれる全単射
Weblioに収録されているすべての辞書から米田の補題を検索する場合は、下記のリンクをクリックしてください。

- 米田の補題のページへのリンク