深さ_(代数学)とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 深さ_(代数学)の意味・解説 

深さ (環論)

(深さ_(代数学) から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/10/23 01:38 UTC 版)

可換およびホモロジー代数において、深さ深度 (depth) は加群の重要な不変量である。深さはより一般に定義できるが、考察される最も一般的なケースは可換ネーター局所環上の加群のケースである。この場合、加群の深さはAuslander-Buchsbaum の公式英語版によってその射影次元と関係する。深さのより初等的な性質は不等式

である、ただし dim M は加群 Mクルル次元を表す。深さはよい性質をもつ環と加群のクラスを定義するのに使われる。例えばコーエン-マコーレー環と加群で、これは等号が成り立つ。

定義

R を可換ネーター環、IR のイデアル、MIMM に真に含まれるという性質をもつ有限 R-加群とする。このとき MI-深度 (I-depth) は、 Mgrade とも呼ばれるが、

と定義される。定義によって、環 R の深度は自身の上の加群としてのその深度である。

David Rees による定理によって、深度は正則列の概念を用いて特徴づけることもできる。

定理 (Rees)

R を可換ネーター局所環でその極大イデアル とし、M を有限生成 R-加群とする。このとき M のすべての極大正則列 x1,..., xn、ただし各 xi に属する、は M-深度と同じ長さ n をもつ。

深さと射影次元

可換ネーター局所環上の加群の射影次元と深さは互いに相補的である。これは Auslander–Buchsbaum の公式の内容である。これは基礎理論的に重要であるばかりでなく、加群の深さを計算する効率的な方法を提供してくれる。R を可換ネーター局所環でその極大イデアルを とし、M を有限生成 R-加群とする。M の射影次元が有限であれば、Auslander–Buchsbaum の公式が述べているのは

深さ0の環

可換ネーター局所環 R が深さ 0 をもつこととその極大イデアル 素因子であることと同値である。あるいは同じことだが、R の 0 でない元 x が存在して (すなわち x を零化する)。これが意味するのは、本質的に、閉点が埋め込まれた成分英語版であるということだ。

例えば、環 (ただし k は体)は原点に埋め込まれた二重点をもつ直線 () を表現するが、原点において深度 0 をもつが次元は 1 である。これはコーエン・マコーレーでない環の例を与える。

参考文献




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「深さ_(代数学)」の関連用語

深さ_(代数学)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



深さ_(代数学)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの深さ (環論) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS