汎函数行列式とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 汎函数行列式の意味・解説 

汎函数行列式

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/07/21 13:14 UTC 版)

ナビゲーションに移動 検索に移動

函数空間 V からそれ自身への線型写像S とすると、行列式の無限次元への一般化が可能なことがしばしばある。この量 det(S) を S汎函数行列式 (: functional determinant)と言う。

汎函数行列式の公式がいくつかあり、それらは皆、対角化可能な有限次元の行列に対しては行列式が固有値の積に等しいという事実を基礎としている。数学的には、作用素のゼータ函数を通して厳密に定義される。

The infinite potential well with A = 0.

井戸型ポテンシャル

井戸型ポテンシャルの中の量子力学的粒子の運動を記述する次の式で定義される汎函数行列式の計算をしよう。

ここに A はポテンシャルの深さで L は井戸の幅とする。作用素を対角化し固有値を掛け合わせることで、行列式を計算しよう。そこで、あって欲しくない発散定数に悩まされないためには、深さ A の作用素と深さ A = 0 の作用素との間で割り算をし、商を計算しよう。このポテンシャルの固有値は

に等しい。

このことは

であることを意味する。さて、正弦函数オイラー無限積を使い

となり、このことから同様な双曲正弦函数を導くことができる。

これを適用して、次のことが分かる。

他の作用素の行列式を計算する方法

1-次元のポテンシャルでは、汎函数行列式の形を少し変える変形が存在する。[5]それは次の表現を考えることにベースがある。

ここに m複素数の定数で、この表現は m有理型函数で、m がポテンシャル V1(x) を持つ作用素の固有値に等しいときにはゼロ点を持ち、V2(x) を持つ作用素の固有値の時には極を持つ。ここで、次の方程式を満たす函数 ψm1 と ψm2 を考える。

また、この函数は次の境界条件を満たすとする。

もし、函数

で、m の有理型函数となっているものを考えると、計算しようとしている行列式の商として同じ極とゼロ点を持っていることがわかる。もし m が作用素番号1の固有値であれば ψm1(x) は ψm1(L) = 0 を意味する固有値であり、分母に対しても同じことが言える。リウヴィルの定理によって2つの同じ極とゼロ点をもつ有理型函数は互いに比例関係にあるはずである。今の場合は、比例定数は1であることが判明しているので、m のすべての値に対して

を得る。m = 0 に対しては、

を得る。

井戸型ポテンシャルの再検討

前節の問題は、この定式化をさらに簡単に解くことができる。函数 ψ0i(x) は次の関係式に従う。

さらに、次の解を与える。

このことは次の最終的な表現を与える。

脚注

  1. ^ (Branson 1993); (Osgood, Phillips & Sarnak 1988)
  2. ^ See Osgood, Phillips & Sarnak (1988)さらにスペクトル函数の項の一般的な定義は、Hörmander (1968)Shubin (1987).
  3. ^ 一般化されたラプラス作用素の場合は、ゼロでの正規化と同様である。Berline, Getzler & Vergne (2004, Proposition 9.35)を参照のこと。楕円型擬微分作用素についての一般的な場合は、Seeley (1967)を参照のこと。
  4. ^ フルビッツゼータ函数(Hurwitz zeta function)は、発見者のAdolf Hurwitzから名前をとっているゼータ函数の一種である。Re(s) > 1 であり Re(q) > 0 となる複素変数 q に対し形式的に次の式で定義される。
    この級数は与えられた s と q について絶対収束し、s≠1 を除くすべての全複素平面での有理型函数へ拡張される(解析接続される)。リーマンゼータ函数は ζ(s,1) である。
  5. ^ S. Coleman, The uses of instantons, Int. School of Subnuclear Physics, (Erice, 1977)

参考文献




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「汎函数行列式」の関連用語




汎函数行列式のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



汎函数行列式のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの汎函数行列式 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS