広義の記数法
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/06 06:07 UTC 版)
この項では基本的な位取り記数法を除く、負の数や虚数を含む記数法等について述べる。 ここでは仮数とは、その位に記された数のこととし、 底(てい)とは、その位の一つ上の位の値が持つ、その位に対する重みの倍率とする。
標準的な記数法
この節では、底が一定で冗長でない記数法について説明する。
書き方は位取り記数法と同じく、底が K であれば、数
底が -1+i で 0, 1 を仮数に持つ記数法により 0.XXX... の形で表記できる範囲。ツインドラゴン曲線と酷似する。 商は K進法で cncn-1…c0 となり、 余りは r-1 となる。 ただし記数法によっては、 0.XXX... の形で表記できる範囲がフラクタルを描くため QK が作れなくなり、除算が不可能となる。 またこの操作をさらに続けると、循環小数が商として得られる。
Q(r, d) の例を次に示す。
- 十進法
d≦0 または r<0 または 10d≦r は禁止で、
0≦r<d ならば Q(r, d)=0
d≦r<2d ならば Q(r, d)=1
2d≦r<3d ならば Q(r, d)=2
......
8d≦r<9d ならば Q(r, d)=8
9d≦r<10d ならば Q(r, d)=9 となる。- 底が -2 で仮数に 0, 1 を持つ記数法
d=0 または (r<-2d/3 かつ r<4d/3) または (-2d/3<r かつ 4d/3<r) は禁止で、
d/3<r≦4d/3 または 4d/3≦r<d/3 ならば Q(r, d)=1
-2d/3≦r≦d/3 または d/3≦r≦-2d/3 ならば Q(r, d)=0 となる。- 平衡三進法
d=0 または (r<-3d/2 かつ r<3d/2) または (-3d/2<r かつ 3d/2<r) は禁止で、
d/2<r≦3d/2 または 3d/2≦r<d/2 ならば Q(r, d)=1
-d/2≦r≦d/2 または d/2≦r≦-d/2 ならば Q(r, d)=0
-3d/2≦r<-d/2 または -d/2<r≦-3d/2 ならば Q(r, d)=-1 となる。記法の変換方法
標準的な記数法に対しての、数の表記法を変換する方法を説明する。
十進法からの変換(整数部分)
余りが仮数に含まれるように底で割っていく方法がある。この方法では下位の仮数から求まる。
例えば十進法で表記された数3620を平衡三進法に変換すると、
3620 ÷ 3 = 1207 . . . -1 1207 ÷ 3 = 402 . . . 1 402 ÷ 3 = 134 . . . 0 134 ÷ 3 = 45 . . . -1 45 ÷ 3 = 15 . . . 0 15 ÷ 3 = 5 . . . 0 5 ÷ 3 = 2 . . . -1 2 ÷ 3 = 1 . . . -1 1 ÷ 3 = 0 . . . 1
から平衡三進法では 1
- 広義の記数法のページへのリンク