変位勾配テンソルとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > ウィキペディア小見出し辞書 > 変位勾配テンソルの意味・解説 

変位

(変位勾配テンソル から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/17 15:41 UTC 版)

古典力学
移動距離(distance)と変位(displacement)の違い。

ばねに繋いだ物体の運動では、物体の位置は、ばねの自然長の位置を基準とした変位で表すのが便利である。

このとき物体の位置エネルギーは、次のような式で表せる。

Figure 1. Motion of a continuum body.

連続体力学においては、変位とは物質点の位置の変化である。変位には、剛体変位と変形という二つの要素がある。剛体変位は、形状や大きさの変化を伴わない、物体の平行移動や回転である。連続体の変位後に物質点間に相対変位がある場合、変形が生じている。一方、物質点間に相対変位がない場合、変形は生じておらず、剛体変位が生じたと言える。

連続体の変位の記述において、変位前の状態を基準配置、変位後の状態を現在配置と呼ぶ。ここで配置とは、物体の全ての物質点の位置から構成される集合である。

変位ベクトル

変位の記述には二つの方法がある。一つは物質表示やラグランジュ表示と呼ばれ、基準配置における位置ベクトル X を用いて物理量を表す方法である。物質表示の際に参照される座標系を物質座標系と呼ぶ。もう一つは、空間表示やオイラー表示と呼ばれ、現在配置における位置ベクトル x を用いて物理量を表す方法である。空間表示の際に参照される座標系を空間座標系と呼ぶ。連続体力学#連続体の記述方法も参照のこと。

基準配置と現在配置における物質点 P の位置を関連付けるベクトルを変位ベクトルと呼び、物質表示では

出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。記事の信頼性向上にご協力をお願いいたします。2014年1月

変位勾配テンソル

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/07/17 20:47 UTC 版)

変位」の記事における「変位勾配テンソル」の解説

物質表示変位ベクトル u ( X , t ) = x ( X , t ) − X {\displaystyle {\boldsymbol {u}}({\boldsymbol {X}},t)={\boldsymbol {x}}({\boldsymbol {X}},t)-{\boldsymbol {X}}} を物質座標X で偏微分して得られるテンソルは、物質変位勾配テンソル ∇X u または単に変位勾配テンソルと呼ばれる。 ∇ X u = ∇ X x − I = F − I {\displaystyle {\begin{aligned}\nabla _{\boldsymbol {X}}{\boldsymbol {u}}&=\nabla _{\boldsymbol {X}}{\boldsymbol {x}}-{\boldsymbol {I}}\\&={\boldsymbol {F}}-{\boldsymbol {I}}\end{aligned}}\qquad } または、 ∂ u iX K = ∂ x iX K − δ i K {\displaystyle {\frac {\partial u_{i}}{\partial X_{K}}}={\frac {\partial x_{i}}{\partial X_{K}}}-\delta _{iK}} ここで、F は変形勾配テンソル、I は恒等テンソルである。 同様に空間表示変位ベクトル U ( x , t ) = x − X ( x , t ) {\displaystyle {\boldsymbol {U}}({\boldsymbol {x}},t)={\boldsymbol {x}}-{\boldsymbol {X}}({\boldsymbol {x}},t)} を空間座標偏微分して得られるテンソルは、空間変位勾配テンソル ∇x U呼ばれる。 ∇ x U = I − ∇ x X = I − F − 1 {\displaystyle {\begin{aligned}\nabla _{\boldsymbol {x}}{\boldsymbol {U}}&={\boldsymbol {I}}-\nabla _{\boldsymbol {x}}{\boldsymbol {X}}\\&={\boldsymbol {I}}-{\boldsymbol {F}}^{-1}\end{aligned}}} または、 ∂ U Jx k = δ J k − ∂ X Jx k {\displaystyle {\frac {\partial U_{J}}{\partial x_{k}}}=\delta _{Jk}-{\frac {\partial X_{J}}{\partial x_{k}}}}

※この「変位勾配テンソル」の解説は、「変位」の解説の一部です。
「変位勾配テンソル」を含む「変位」の記事については、「変位」の概要を参照ください。

ウィキペディア小見出し辞書の「変位勾配テンソル」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「変位勾配テンソル」の関連用語

変位勾配テンソルのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



変位勾配テンソルのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの変位 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの変位 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS