伸張_(作用素論)とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 伸張_(作用素論)の意味・解説 

伸張 (作用素論)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2014/04/27 15:27 UTC 版)

数学作用素論において、あるヒルベルト空間 H 上の作用素 T伸張(しんちょう、: dilation)とは、より大きなヒルベルト空間 K 上の作用素で、H の上への直交射影と合成される H への制限が T に等しいもののことを言う。

より正式に、T をあるヒルベルト空間上 H の有界作用素とし、H はより大きなヒルベルト空間 H' の部分空間とする。このとき、 H' 上のある有界作用素 V が T の伸張であるとは、

が成立することを言う。ここで H 上の射影である。

このような V はユニタリ(あるいは正規または等長)であるとき、ユニタリ伸張(あるいはそれぞれ、正規伸張または等長伸張)であると言われる。TV圧縮と呼ばれる。作用素 Tスペクトル集合 を持つとき、もし VT の正規伸張で であるなら、そのような V正規有界伸張(normal boundary dilation)あるいは正規 伸張と呼ばれる。

いくつかの文脈ではさらなる付加条件も課される。すなわち、伸張は次の性質も満たす必要があるとされる。

ここで f(T) はある特定の汎関数計算(例えば、多項式あるいは H 計算)である。伸張の有用性は、T に関する対象を V のレヴェルまで「押し上げる」点にある。そのような押し上げられた対象はより良い性質を持つ場合がある。例えば、可換押し上げ定理を参照されたい。

応用

ヒルベルト空間上のすべての縮小写像にはユニタリ伸張が存在する。この伸張は次のようなものである。縮小写像 T に対し、作用素

は正となる。ここで平方根を定義するために連続汎関数計算英語版が使われる。作用素 DTT欠陥作用素(defect operator)と呼ばれる。V

上で定義される、次のような作用素(行列)とする。

V は明らかに T の伸張である。また T(I - T*T) = (I - TT*)T

を意味する。これを使うことで、直接的な計算により、V はユニタリであり、したがって T のユニタリ伸張であることが示される。この作用素 V はしばしば Tジュリア作用素(Julia operator)と呼ばれる。

T が実スカラー であるとき、

が得られるが、これは θ による回転を表すユニタリ行列に他ならない。このため、ジュリア作用素 V(T) はしばしば T の初等回転(elementary rotation)と呼ばれる。

ここで上述の議論では、伸張に対する計算の性質は要求されていなかったことに注意されたい。実際、直接的な計算により、ジュリア作用素は一般に「次数 2」伸張となるとは限らない、すなわち

が成立するとは限らないことに注意されたい。しかし、任意の縮小は、上述の計算の性質を備えるユニタリ伸張を持つことが示される。これはナジーの伸張定理と呼ばれるものである。より一般に、ディリクレ環であるなら、 を特殊な集合として持つ任意の作用素 T は、この性質を備える正規 伸張を持つ。これはナジーの伸張定理を、すべての縮小写像が単位円盤を特殊な集合として持つように一般化するものである。

参考文献

  • T. Constantinescu, Schur Parameters, Dilation and Factorization Problems, Birkhauser Verlag, Vol. 82, ISBN 3-7643-5285-X, 1996.
  • Vern Paulsen, Completely Bounded Maps and Operator Algebras 2002, ISBN 0-521-81669-6

「伸張 (作用素論)」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「伸張_(作用素論)」の関連用語

伸張_(作用素論)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



伸張_(作用素論)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの伸張 (作用素論) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS