リー代数の表現
(リー環の表現論 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/15 02:26 UTC 版)
ナビゲーションに移動 検索に移動![]() | 原文と比べた結果、この記事には多数(少なくとも5個以上)の誤訳があることが判明しています。情報の利用には注意してください。 |
数学の一分野である表現論では、リー代数の表現(リーだいすうのひょうげん、representation of a Lie algebra)は、リー代数を行列の集合(ベクトル空間の準同型)として記述する方法である。この方法により、リーブラケットは交換子により与えられる。
考え方はリー群の表現の考え方と密接に関連する。大まかには、リー代数の表現は、リー群の表現の微分した形であり、一方、リー群の普遍被覆の表現は、リー代数の表現の積分した形である。
リー代数の表現の研究で、リー代数に付随する普遍包絡代数と呼ばれる特別な環は、決定的役割を果たす。この環の構成の普遍性は、リー代数の表現の圏が、この普遍包絡代数上の加群の圏と同じであることを言っている。
公式な定義
半単純リー代数の分類方法と同様に、半単純リー代数の有限次元表現を分類することができる。これは、非常に美しいと広く考えられている分類理論であり、標準的な参考として、(Fulton & Harris 1992) がある。
半単純リー代数の有限次元表現は、完全可約であり、従って、規約な(単純な)表現へ分類することが充分可能である。半単純リー代数は、随伴表現のウェイトのことば、いわゆるルート系(root system)で分類される。同様な方法で、すべて有限次元既約表現はウェイトのことばで理解することができる。詳細は、ウェイト (表現論)を参照。
代数上の表現
L を超代数とすると、L の代数上の表現は、(結合的である必要はない)Z2 次数付き代数 A である。A はZ2 次数付きベクトル空間(graded vector space)上の L の表現であり、加えて、L の元は A 上に 微分(derivation)/反微分(antiderivation) として作用する。
さらに、特に H が L の純粋元であり、x と y が A の純粋元であれば、
- リー代数の表現のページへのリンク