半単純リー代数
代数閉体上の半単純リー代数は定義より単純リー代数の直和であり、また単純リー代数は4つの族(An、Bn、Cn、Dn)と5つの例外( E6、E7、E8、F4、G2)で尽くされる。単純リー代数は右に示した連結ディンキン図形によって分類され、半単純リー代数は必ずしも連結とは限らないディンキン図形に対応している。
分類はカルタン部分代数(最大可換リー代数)とそれに対する随伴表現を調べることにより進められる。その作用のルート系は元のリー代数を決定し、また強い制約を満たすことからディンキン図形により分類される。
単純リー代数の分類は数学における最もエレガントな結果の一つであると広く考えられており、簡潔ないくつかの公理が比較的短い証明により完全かつ非自明で驚くべき構造を備えた分類を生み出している。これはより複雑な有限単純群の分類とも比較されるべきである。
重複のない単純リー代数の列挙が、 An に対し
- Bourbaki, Nicolas (2005), “VIII: Split Semi-simple Lie Algebras”, Elements of Mathematics: Lie Groups and Lie Algebras: Chapters 7–9
- Erdmann, Karin; Wildon, Mark (2006), Introduction to Lie Algebras (1st ed.), Springer, ISBN 1-84628-040-0.
- Humphreys, James E. (1972), Introduction to Lie Algebras and Representation Theory, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90053-7.
- Varadarajan, V. S. (2004), Lie Groups, Lie Algebras, and Their Representations (1st ed.), Springer, ISBN 0-387-90969-9.
- 半単純リー代数のページへのリンク