ポテンシャル論
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/11/14 09:55 UTC 版)
数学および数理物理学におけるポテンシャル論(ポテンシャルろん、英: potential theory)とは、調和函数に関する理論のことを言う。
19世紀の物理学において、自然界における基本的な力はラプラス方程式を満たすポテンシャルによってモデル化出来ることが知られ、そのときに「ポテンシャル論」という語が初めて用いられた。その後、例えば古典静電気学やニュートン重力などのより精確な理論の発展があったが、依然として「ポテンシャル論」という語は残されている。
ポテンシャル論とラプラス方程式の理論には、重複する点が少なからず存在する。それら二つの理論の明白な区別は、内容というよりも次に示す一つの明白な強調点に依っている:ポテンシャル論では「函数」の性質に焦点が置かれるが、ラプラス方程式の理論では「方程式」の性質に焦点が置かれる。例えば、調和函数の特異性に関する結果はポテンシャル論に属すると言えるが、その函数が境界値にどのように依存するかという点に関する結果はラプラス方程式の理論に属すると言えよう。もちろん、これは絶対的な区別ではなく、それら二つの理論における手法や結果には、実際には重複する点も多い。
近代のポテンシャル論はまた、確率論やマルコフ連鎖の理論とも密接に関連している。また連続の場合には、解析理論と密接に関連している。状態空間が有限の場合、その空間上の電気ネットワーク、推移確率に反比例する点の間の抵抗、ポテンシャルに比例する密度を導入することによって、そのような関連性が導かれる。そのような有限の場合であっても、ポテンシャル論におけるラプラシアンの analogue I-K はそれ自身の極大原理や一意性原理、バランス原理やその他の原理を備えるものである。
対称性
調和函数の研究における有用な出発点であり、原理の構成を担うものとして、ラプラス方程式の対称性が考えられる。その語の対称性は通常の意味のものではないが、ラプラス方程式は線型であるという事実から理論を出発することが出来る。すなわち、ポテンシャル論の研究における根本的な研究対象は函数の線型空間である。このことは、後述の節での函数空間的手法を考える際に特に重要であることが示される。
通常の語の意味における対称性に関して言えば、
- A.I. Prilenko, E.D. Solomentsev (2001), “Potential theory”, in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
- E.D. Solomentsev (2001), “Abstract potential theory”, in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
- S. Axler, P. Bourdon, W. Ramey (2001). Harmonic Function Theory (2nd edition). Springer-Verlag. ISBN 0-387-95218-7.
- O. D. Kellogg (1969). Foundations of Potential Theory. Dover Publications. ISBN 0-486-60144-7.
- L. L. Helms (1975). Introduction to potential theory. R. E. Krieger ISBN 0-88275-224-3.
- J. L. Doob. Classical Potential Theory and Its Probabilistic Counterpart, Springer-Verlag, Berlin Heidelberg New York, ISBN 3-540-41206-9.
- L. Snell. "Random Walks and Electric Circuits", arXiv
この記事は、クリエイティブ・コモンズ・ライセンス 表示-継承 3.0 非移植のもと提供されているオンライン数学辞典『PlanetMath』の項目Potential Theoryの本文を含む
関連書籍等
- 相川弘明:「複雑領域上のディリクレ問題」、岩波書店(岩波数学叢書)、ISBN 978-4-00-007560-2 (2008年6月26日).
- ポテンシャル論のページへのリンク